簡易檢索 / 詳目顯示

研究生: 溫瑞慈
Wen, Jui-Tzu
論文名稱: 探討 CCAAT/強化結合蛋白 δ 在化療藥物 Doxorubicin 治療後所引起的心肌病變中的角色
The Role of CCAAT/Enhancer-Binding Protein δ in Doxorubicin-Induced Cardiomyopathy
指導教授: 劉秉彥
Liu, Ping-Yen
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 51
中文關鍵詞: 心臟衰竭阿黴素CCAAT/增強子結合蛋白 δ炎症反應
外文關鍵詞: Heart failure, Doxorubicin, C/EBP δ, inflammation
相關次數: 點閱:88下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 心臟衰竭是全球心血管疾病最後高死亡率的原因之一。其中一造成心臟衰竭原因包含治療癌症患者所使用的化學治療藥物。阿黴素是一治療癌症的有效化療藥物,但也有報告指出阿黴素可以誘發心肌病,最終產生心臟衰竭。利用高劑量阿黴素引起心臟衰竭的小鼠是一種常用的動物模型來探討治療心臟衰竭手段,包括:藥物、細胞、器械或蛋白的作用機轉。在心臟和心肌病的過程中,炎症反應很容易發生。 C/EBP δ 屬於 CCAAT/增強子結合蛋白 (CCAAT / Enhancing Binding Protein: C/EBP) 家族的轉錄因子,在正常狀態細胞中是低的,當受到外來刺激物質的影響會快速被誘發,進而引發細胞內一系列訊號傳導。一些報告提出了 C / EBP δ,在先天免疫反應的激活作用,也是促進炎症反應。根據過去細胞與實驗動物研究指出,C / EBP δ 缺乏可能防止脂多醣 (LPS) 誘導的肺損傷,但對 C/ EBP δ 於心肌細胞的作用, 只限於有限的研究資料。在我們的研究中,利用腹腔注射阿黴素誘導在小鼠心臟產生的慢性炎症反應,並利用現有的 Cebpd 基因剔除鼠,研究心臟衰竭的病理生理過程中 C / EBP δ 所扮演的作用。我們發現,剔除 C/EBP δ 可以降低使用阿黴素的初期對心臟造成的傷害,並且提高小鼠的存活率.未來也許可以應用在慢性及急性心臟衰竭的患者,於初期抑制 C/EBP δ 並合併抗發炎藥物降低心肌發炎的因素,降低治療前及治療中,心臟受損的機率,提升更穩定及增加治療機會.

    Heart failure (HF) is one of the leading causes of cardiovascular mortality and morbidity in the world. In the treatment of cancer patients, the chemical used in chemotherapy, doxorubicin (DOX), can induce cardiomyopathy and HF. DOX-induced HF in mice is a commonly used animal model to explore the mechanism and therapeutic tools. During the process of cardiotoxicity and cardiomyopathy, inflammation reactions occur. C/EBP δ belongs to the CCAAT/enhancer binding protein (C/EBP) family of transcription factors, and it is low in normal physiological conditions but will rapidly increase in number from certain external stimuli, inducing signal transduction in the cell. Some reports have suggested a role for C/EBP δ in the activation of the innate immune response and pro-inflammatory conditions. It regulates the expression of inflammatory genes. Previous studies have shown that Cebpd deficiency could protect against lipopolysaccharide (LPS)-induced lung injury in vivo, however, few studies have examined the role of C/EBP δ on cardiomyocytes. In our study, intraperitoneal (i.p.) injections DOX induced chronic inflammation reaction in mice heart. Using cebpd knockout mice to test the role of C/EBP δ during the pathophysiologic course of HF. We found that cebpd deficiency could reduce HF in the early stage while DOX treatment and improve the chance of survival. In the future, it may combine the inhibition of C/EBP δ with anti-inflammatory drugs to reduce the myocardial inflammatory responses in the chronic/acute HF patients. It will ameliorate the heart injury in the early treatment and improve the more stable and healing opportunity.

    摘要 I Abstract III 誌謝 V Contents VII Abbreviations IX Chapter 1. Introduction 1 1.1 Heart failure and cardiomyopathy 1 1.2 Doxorubicin (DOX) causes cardiotoxicity and heart inflammation 2 1.3 CCAAT/enhancer binding protein 3 1.4 CCAAT/enhancer binding protein δ and inflammation 4 1.5 Research motivation: The role of C/EBP δ in the heart 7 Chapter 2. Materials and Methods 9 2.1 Heart failure animal model caused by DOX 9 2.1.1 Acute heart failure animal model 9 2.1.2 Chronic heart failure animal model 9 2.2 Echocardiography for the measurement of cardiac function 9 2.2.1 M-mode 10 2.2.2 2-D Volumetric Measurement with 4-Chamber Modified Simpson (4C MOD) 10 2.3 Immunochemistry (IHC) stain of the paraffin-embedded heart sections 11 2.4 Cell culture and preparation for experiments 11 2.5 MTT assay for detecting cell viability 12 2.6 Nuclear/cytosol fraction for mice heart 12 2.7 Bicinchoninic acid (BCA) protein assay for quantitative protein concentration 13 2.8 Western blot for exploring the mechanism of the cardiomyopathy via C/EBP δ 13 2.9 Statistical analysis 14 Chapter 3. Results 16 3.1 DOX-induced heart failure model 16 3.1.1 Acute heart failure model 16 3.1.2 Chronic heart failure model 16 3.2 Proteins expression in early stage of heart failure WT and cebpd-/- mice 17 3.3 C/EBP δ induction in early phase chronic heart failure caused by DOX in vivo 18 3.4 Determining a suitable DOX concentration to explore the mechanism through the C/EBP δ by MTT assay 18 3.5 Mechanism of DOX-induced heart injury through the C/EBP δ in vitro 19 3.6 C/EBP δ induction in DCM patients 20 Chapter 4. Discussion 21 References 26 Figures and figure legends 30 Figure 1. Acute heart failure model with C57BL/6 mice. 30 Figure 2. DOX-induced chronic heart failure animal model. 31 Figure 3. DOX-induced chronic heart failure in WT and cebpd deficiency mice. 32 Figure 4. Cebpd-/- mice have cardioprotection in early heart failure and good survival rate after DOX treatment. 33 Figure 5. Protein expression by nuclear/cytosol fraction from WT and cebpd-/- mice hearts. 34 Figure 6. Histological analysis for C/EBP δ expression in DOX treated mice. 35 Figure 7. The concentration of DOX determines cell viability by MTT assay. 36 Figure 8. C/EBP δ is induced by DOX in the early stage. 37 Figure 9. Expression of C/EBP δ in human transplanted hearts. 38

    Akira, S., Isshiki, H., Sugita, T., Tanabe, O., Kinoshita, S., Nishio, Y., . . . Kishimoto, T. (1990). A nuclear factor for IL-6 expression (NF-IL6) is a member of a C/EBP family. Embo j, 9(6), 1897-1906.

    Balamurugan, K., Sharan, S., Klarmann, K. D., Zhang, Y., Coppola, V., Summers, G. H., . . . Sterneck, E. (2013). FBXW7alpha attenuates inflammatory signalling by downregulating C/EBPdelta and its target gene Tlr4. Nat Commun, 4, 1662. doi:10.1038/ncomms2677

    Balamurugan, K., & Sterneck, E. (2013). The many faces of C/EBPdelta and their relevance for inflammation and cancer. Int J Biol Sci, 9(9), 917-933. doi:10.7150/ijbs.7224

    Banerjee, S., Xie, N., Cui, H., Tan, Z., Yang, S., Icyuz, M., . . . Liu, G. (2013). MicroRNA let-7c regulates macrophage polarization. J Immunol, 190(12), 6542-6549. doi:10.4049/jimmunol.1202496

    Berthiaume, J. M., & Wallace, K. B. (2007). Adriamycin-induced oxidative mitochondrial cardiotoxicity. Cell Biol Toxicol, 23(1), 15-25. doi:10.1007/s10565-006-0140-y

    Cardinale, D., Colombo, A., Bacchiani, G., Tedeschi, I., Meroni, C. A., Veglia, F., . . . Cipolla, C. M. (2015). Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation, 131(22), 1981-1988. doi:10.1161/circulationaha.114.013777

    Chandrasekera, P. C., & Pippin, J. J. (2015). The human subject: an integrative animal model for 21(st) century heart failure research. Am J Transl Res, 7(9), 1636-1647. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4626425/pdf/ajtr0007-1636.pdf

    Giguere, S., Bucki, E., Adin, D. B., Valverde, A., Estrada, A. H., & Young, L. (2005). Cardiac output measurement by partial carbon dioxide rebreathing, 2-dimensional echocardiography, and lithium-dilution method in anesthetized neonatal foals. J Vet Intern Med, 19(5), 737-743.

    Go, A. S., Mozaffarian, D., Roger, V. L., Benjamin, E. J., Berry, J. D., Blaha, M. J., . . . Turner, M. B. (2014). Heart disease and stroke statistics--2014 update: a report from the American Heart Association. Circulation, 129(3), e28-e292. doi:10.1161/01.cir.0000441139.02102.80

    Hamo, C. E., & Bloom, M. W. (2015). Getting to the Heart of the Matter: An Overview of Cardiac Toxicity Related to Cancer Therapy. Clin Med Insights Cardiol, 9(Suppl 2), 47-51. doi:10.4137/cmc.s19704

    Huang, G. N., Thatcher, J. E., McAnally, J., Kong, Y., Qi, X., Tan, W., . . . Olson, E. N. (2012). C/EBP transcription factors mediate epicardial activation during heart development and injury. Science, 338(6114), 1599-1603. doi:10.1126/science.1229765

    Ichikawa, Y., Ghanefar, M., Bayeva, M., Wu, R., Khechaduri, A., Naga Prasad, S. V., . . . Ardehali, H. (2014). Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J Clin Invest, 124(2), 617-630. doi:10.1172/jci72931

    Ko, C. Y., Chang, W. C., & Wang, J. M. (2015). Biological roles of CCAAT/Enhancer-binding protein delta during inflammation. J Biomed Sci, 22, 6. doi:10.1186/s12929-014-0110-2

    Lekstrom-Himes, J., & Xanthopoulos, K. G. (1998). Biological role of the CCAAT/enhancer-binding protein family of transcription factors. J Biol Chem, 273(44), 28545-28548.

    Li, R., Strohmeyer, R., Liang, Z., Lue, L. F., & Rogers, J. (2004). CCAAT/enhancer binding protein delta (C/EBPdelta) expression and elevation in Alzheimer's disease. Neurobiol Aging, 25(8), 991-999. doi:10.1016/j.neurobiolaging.2003.10.016

    Litvak, V., Ramsey, S. A., Rust, A. G., Zak, D. E., Kennedy, K. A., Lampano, A. E., . . . Aderem, A. (2009). Function of C/EBPdelta in a regulatory circuit that discriminates between transient and persistent TLR4-induced signals. Nat Immunol, 10(4), 437-443. doi:10.1038/ni.1721

    Ma, Y., Zhang, X., Bao, H., Mi, S., Cai, W., Yan, H., . . . Hu, Z. (2012). Toll-like receptor (TLR) 2 and TLR4 differentially regulate doxorubicin induced cardiomyopathy in mice. PLoS One, 7(7), e40763. doi:10.1371/journal.pone.0040763

    Maisch, B., Richter, A., Sandmoller, A., Portig, I., & Pankuweit, S. (2005). Inflammatory dilated cardiomyopathy (DCMI). Herz, 30(6), 535-544. doi:10.1007/s00059-005-2730-5

    McConachie, E., Barton, M. H., Rapoport, G., & Giguere, S. (2013). Doppler and volumetric echocardiographic methods for cardiac output measurement in standing adult horses. J Vet Intern Med, 27(2), 324-330. doi:10.1111/jvim.12034

    Moore, F., Santin, I., Nogueira, T. C., Gurzov, E. N., Marselli, L., Marchetti, P., & Eizirik, D. L. (2012). The transcription factor C/EBP delta has anti-apoptotic and anti-inflammatory roles in pancreatic beta cells. PLoS One, 7(2), e31062. doi:10.1371/journal.pone.0031062

    Poli, V., Mancini, F. P., & Cortese, R. (1990). IL-6DBP, a nuclear protein involved in interleukin-6 signal transduction, defines a new family of leucine zipper proteins related to C/EBP. Cell, 63(3), 643-653.

    Raj, S., Franco, V. I., & Lipshultz, S. E. (2014). Anthracycline-induced cardiotoxicity: a review of pathophysiology, diagnosis, and treatment. Curr Treat Options Cardiovasc Med, 16(6), 315. doi:10.1007/s11936-014-0315-4

    Ramji, D. P., & Foka, P. (2002). CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem J, 365(Pt 3), 561-575. doi:10.1042/bj20020508

    Shi, Y., Moon, M., Dawood, S., McManus, B., & Liu, P. P. (2011). Mechanisms and management of doxorubicin cardiotoxicity. Herz, 36(4), 296-305. doi:10.1007/s00059-011-3470-3

    Takata, Y., Kitami, Y., Yang, Z. H., Nakamura, M., Okura, T., & Hiwada, K. (2002). Vascular inflammation is negatively autoregulated by interaction between CCAAT/enhancer-binding protein-delta and peroxisome proliferator-activated receptor-gamma. Circ Res, 91(5), 427-433.

    Vermeiren, G. L., Malbrain, M. L., & Walpot, J. M. (2015). Cardiac Ultrasonography in the critical care setting: a practical approach to asses cardiac function and preload for the "non-cardiologist". Anaesthesiol Intensive Ther. doi:10.5603/AIT.a2015.0074

    Yan, C., Johnson, P. F., Tang, H., Ye, Y., Wu, M., & Gao, H. (2013). CCAAT/enhancer-binding protein delta is a critical mediator of lipopolysaccharide-induced acute lung injury. Am J Pathol, 182(2), 420-430. doi:10.1016/j.ajpath.2012.10.013

    Zhang, S., Liu, X., Bawa-Khalfe, T., Lu, L. S., Lyu, Y. L., Liu, L. F., & Yeh, E. T. (2012). Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med, 18(11), 1639-1642. doi:10.1038/nm.2919

    無法下載圖示 校內:2021-01-27公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE