| 研究生: |
郭窈伶 Kuo, Yao-Ling |
|---|---|
| 論文名稱: |
錫鋅共晶銲錫與電鍍鎳層之界面反應研究 Investigation of the Interfacial Reaction between Eutectic Sn-9Zn Lead-free Solder Alloy and Electroplated Ni |
| 指導教授: |
林光隆
Lin, Kuang-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 界面反應 、錫鋅共晶銲錫 、電鍍鎳 |
| 外文關鍵詞: | interfacial reaction, Sn-9Zn, electroplated Ni |
| 相關次數: | 點閱:62 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在電子構裝中,銲錫合金是用以接合電子元件與基板,因此銲錫接點的接合強度是非常重要的性質。由於做為銲錫隆點底層金屬(Under Bump Metallurgy;UBM)的銅會與銲錫快速的反應形成過多介金屬化合物,造成接點失效。近來在銲錫與銅銲墊之間鍍上一層鎳,利用鎳與銲錫反應速率較低的特性,做為擴散阻礙層,避免銅銲墊被快速地消耗。
而共晶錫鋅銲錫因具有較低的熔點、良好的機械性質以及低廉的成本,成為取代傳統共晶錫鉛銲錫的一個很好的選擇。本研究係觀察電鍍鎳與液態錫鋅銲錫間之界面反應,改變反應溫度與時間,量測其生成物厚度的變化,以探討其間所生成反應層之成長機制以及其成長所需的活化能。研究結果顯示,在230 ~ 290℃生成反應層總厚度會隨著反應時間的增加而增厚,且隨溫度提高,反應層之成長由界面反應與擴散行為混合控制轉為由擴散行為控制,其成長所需活化能為71.3 kJ/mol。
以聚焦離子束顯微鏡觀察經過表面微蝕刻後的反應界面,可清楚看到所生成的反應層不只一層。經EDS分析各層成份,發現在250℃生成之反應層包括Ni5Zn21及鎳鋅固溶層,將反應溫度提高至270℃之反應層為Ni5Zn21、鎳鋅固溶層及NiZn3,而在290℃之反應層為Ni5Zn21與NiZn3。在不同反應溫度反應10 ~ 120分鐘,各反應層中僅Ni5Zn21隨反應時間有明顯增厚的現象,NiZn3及鎳鋅固溶層隨反應時間厚度沒有明顯變化。
Soldering has been the key assembly and interconnection technology for electronic products. Solder joints have long been recognized as the weak links in electronic products, and the reliability of each individual joint can control the overall lifespan of an electronic product. Copper is one of the most popular choices for the surface layer of the under bump metallurgy (UBM), mainly due to its good wetting property with solders. During assembly or normal service of the device, the Cu layer will be consumed completely, causing failure in solder joints. Therefore, Ni is used as a diffusion barrier layer to prevent the rapid interfacial reaction between the solder and Cu layer.
Eutectic Sn-9Zn solder has been considered as one of the alternatives for conventional eutectic Sn-37Pb due to the low melting point, excellent mechanical properties and low cost. The present work investigated the interfacial reaction between electroplated Ni and molten eutectic Sn-9Zn solder. The experiment was conducted under the temperature range between 230 and 290℃ for 10 to 120 min. During the reaction, the intermetallic compound (IMC) formed between Ni layer and the solder. The kinetics of IMC growth was investigated by measuring the thickness of IMC after solid-liquid reaction at different temperatures for different period of time. The results show that the thickness of the total IMC layer increased with increasing reaction time. The controlling mechanism of the growth of the IMC layer changes from mixed controlled to diffusion controlled. The activation energy of the growth was estimated to be 71.3 kJ/mol.
The interaction gives rise to more than one IMC at the interface as revealed by FIB (Focus Ion Beam) treatment. According to the EDS results, the IMC formed at 250℃ were Ni5Zn21 and Ni-Zn solid solution layer. At 270℃, NiZn3 formed between Ni5Zn21 and Ni-Zn solid solution. As the temperature increases up to 290℃, Ni5Zn21 and NiZn3 were found at the interface. Under different temperatures, the thickness of Ni5Zn21 had increased prominently with reaction time. However, there is no observable change in the thickness of NiZn3 and Ni-Zn solid solution during reaction.
1. C. A. Haper, Electronic Assembly Fabrication : Chips, Circuit Boards, Packages, and Components, McGraw-Hill, New York, 2002, pp. 267-274.
2. D. D. L. Chung, Materials for Electronic Packaging, Butterworth-Heinemann, Boston, 1995, pp. 3-4.
3. J. H. Lau, Chip on Board Technologies for Multichip Modules, Van Nostrand Reinhold, New York, 1994, Chapter 1.
4. C. A. Haper, Electronic Packaging and Interconnection Handbook, McGraw-Hill, New York, 2005, pp. 5.81-5.83.
5. The European Parliament and the Council of the European Union, "Directive 2002/96/EC of the European Parliament and of the Council of 27 January 2003 on Waste Electrical and Electronic Equipment (WEEE)", Official Journal of the European Union, 2003, pp. 24-37.
6. The European Parliament and the Council of the European Union, "Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment", Official Journal of the European Union, 2003, pp. 19-22.
7. N. C. Lee, "Getting Reading for Lead-free Solder", Soldering & Surface Mount Technology, Vol. 9, 1997, pp. 95-69.
8. M. Abtew and G. Selvaduray, "Lead-free Solders in Microelectronics", Materials Science and Engineering R, Vol. 27, No. 5-6, 2000, pp. 95-141.
9. T. B. Massalski, Binary Alloy Phase Diagrams, William W. Scott, 1986, p. 1848.
10. Current Primary and Scrap Metal Prices, http://www.metalprices.com/FreeSite/index.asp
11. N. C. Lee, 「1998先進電子封裝技術趨勢研討會」講義, 新竹, 1998, pp. 8/1-8/8.
12. T. B. Massalski, Binary Alloy Phase Diagrams, William W. Scott, 1986, p. 71.
13. W. Yang and R. W. Messler, "Microstructure Evolution of Eutectic Sn-Ag Solder Joints", Journal of Electronic Materials, Vol. 23, No. 8, 1994, pp. 765-772.
14. M. Harada and R. Satoh, "Mechanical Characteristics of 96.5Sn/3.5Ag Solder in Microbonding", IEEE Transactions on Components Hybrids and Manufacturing Technology, Vol. 13, No. 4, 1990, pp. 736-742.
15. M. McCormack, S. Jin, G. W. Kammlott and H. S. Chen, "New Lead-free Solder Alloy with Superior Mechanical Properties", Applied Physics Letters, Vol. 63, No. 1, 1993, pp. 15-17.
16. M. McCormack, G. W. Kammlott, H. S. Chen and S. Jin, "New Lead-free, Sn-Ag-Zn-Cu Solder Alloy with Improved Mechanical Properties", Applied Physics Letters, Vol. 65, No. 10, 1994, pp. 1233-1235.
17. 陳信文, "無鉛銲料簡介", 電子與材料, Vol. 1, 1999, pp. 74-77.
18. J. Glazer, "Metallurgy of Low Temperature Pb-free Solders for Electronic Assembly", Internationals Materials Reviews, Vol. 40, No. 2, 1995, pp. 65-92.
19. L. E. Felton, C. H. Raeder and D. B. Knorr, "The Properties of Tin-Bismuth Alloy Solders", Journal of Minerals Metals & Materials Society (JOM), Vol. 45, No. 7, 1993, pp. 28-32.
20. K. Suganuma, Interface Phenomena in Lead-free Soldering, Tokyo, 1999, pp. 620-625.
21. T. B. Massalski, Binary Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1986, pp. 540-541.
22. T. B. Massalski, Binary Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1990, p. 2296.
23. S. K. Kang and A. K. Sarkhel, "Lead(Pb)-free Solders for Electronic Packaging", Journal of Electronic Materials, Vol. 23, 1994, pp. 701-707.
24. J. L. F. Goldstein and J. W. Morris, "The Effect of Substrate on the Microstructure and Creep of Eutectic In-Sn", Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, Vol. 25, No. 12, 1994, pp. 2715-2722.
25. M. S. Yeh, "Effects of Indium on the Mechanical Properties of Ternary Sn-In-Ag Solders", Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, Vol. 34, No. 2, 2003, pp. 361-365.
26. K. L. Lin and C. L. Shih, "Wetting Interaction between Sn-Zn-Ag Solders and Cu", Journal of Electronic Materials, Vol. 32, No. 2, 2003, pp. 95-100.
27. T. Takemoto and T. Funaki, "Role of Electrode Potential Difference between Lead-free Solder and Copper Base Metal in Wetting", Materials Transactions, Vol. 43, No. 8, 2002, pp. 1784-1790.
28. K. L. Lin and T. P. Liu, "High-temperature Oxidation of a Sn-Zn-Al Solder", Oxidation of Metals, Vol. 50, No. 3-4, 1998, pp. 255-267.
29. T. B. Massalski, Binary Alloy Phase Diagrams, William W. Scott, 1986, p. 2086.
30. T. Sugizaki, H. Nakao, T. Kimura and T. Watanabe, "BGA Jointing Property of Sn-8.8 mass % Zn and Sn-8.0 mass % Zn-3.0 mass % Bi Solder on Electroless Nickel-phosphorus/Immersion Gold Plated Substrates", Materials Transactions, Vol. 44, No. 9, 2003, pp. 1790-1796.
31. R. A. Islam, B. Y. Wu, M. O. Alam, Y. C. Chan and W. Jillek, "Investigations on Microhardness of Sn-Zn Based Lead-free Solder Alloys as Replacement of Sn-Pb Solder", Journal of Alloys and Compounds, Vol. 392, No. 1-2, 2005, pp. 149-158.
32. M. McCormack, S. Jin, H. S. Chen and D. A. Machusak, "New Lead-free, Sn-Zn-In Solder Alloys", Journal of Electronic Materials, Vol. 23, No. 7, 1994, pp. 687-690.
33. J. M. Song and Z. M. Wu, "Variable Eutectic Temperature Caused by Inhomogeneous Solute Distribution in Sn-Zn System", Scripta Materialia, Vol. 54, No. 8, 2006, pp. 1479-1483.
34. V. I. Dybkov, V. G. Khoruzha, V. R. Sidorko, K. A. Meleshevich, A. V. Samelyuk, D. C. Beffy and K. Barmak, "Interfacial Interaction of Solid Nickel with Liquid Pb-free Sn-Bi-In-Zn-Sb Soldering Alloys", Journal of Alloys and Compounds, Vol. 460, No. 1-2, 2008, pp. 337-352.
35. M. O. Alam and Y. C. Chan, "Solid-state Growth Kinetics of Ni3Sn4 at the Sn-3.5Ag Solder/Ni Interface", Journal of Applied Physics, Vol. 98, No. 12, 2005, pp. 123527-123521~123527-123524.
36. J. W. Yoon, C. B. Lee and S. B. Jung, "Growth of an Intermetallic Compound Layer with Sn-3.5Ag-5Bi on Cu and Ni-P/Cu During Aging Treatment", Journal of Electronic Materials, Vol. 32, No. 11, 2003, pp. 1195-1202.
37. J. H. Lau, Flip Chip Technologies, McGraw-Hill, New York, 1996, Chapter 1.
38. A. Sharif and Y. C. Chan, "Investigation of Interfacial Reactions between Sn-Zn Solder with Electrolytic Ni and Electroless Ni(P) Metallization", Journal of Alloys and Compounds, Vol. 440, No. 1-2, 2007, pp. 117-121.
39. P. M. Hansen, R. P. Elliott and F. A. Shunk, Constitution of Binary Alloys, McGraw-Hill, New York, 1958, p. 1060.
40. C. Y. Liu, L. Ke, Y. C. Chuang and S. J. Wang, "Study of Electromigration-induced Cu Consumption in the Flip-chip Sn/Cu Solder Bumps", Journal of Applied Physics, Vol. 100, No. 8, 2006, Article No. 083702.
41. T. B. Massalski, Binary Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1986, p. 1759.
42. Y. C. Chan, M. Y. Chiu and T. H. Chuang, "Intermetallic Compounds Formed During the Soldering Reactions of Eutectic Sn-9Zn with Cu and Ni Substrates", Zeitschrift Fur Metallkunde, Vol. 93, No. 2, 2002, pp. 95-98.
43. C. Y. Chou, S. W. Chen and Y. S. Chang, "Interfacial Reactions in the Sn-9Zn-(xCu)/Cu and Sn-9Zn-(xCu)/Ni Couples", Journal of Materials Research, Vol. 21, No. 7, 2006, pp. 1849-1856.
44. W. J. Zhu, H. S. Liu, J. S. Wang, G. Ma and Z. P. Jin, "Interfacial Reactions Between Sn-Zn Alloys and Ni Substrates", Journal of Electronic Materials, Vol. 39, No. 2, 2010, pp. 209-214.
45. C. M. L. Wu and C. M. T. Law, "Microstructure Evolution and Shear Strength of Eutectic Sn-9Zn and Sn-0.7Cu Lead-free BGA Solder Balls", High Density Microsystem Design and Packaging and Component Failure Analysis, Proceeding of the Sixth IEEE CPMT Conference, 2004, pp. 47-51.
46. D. Gur and M. Bamberger, "Reactive Isothermal Solidification in the Ni-Sn System", Acta Materialia, Vol. 46, No. 14, 1998, pp. 4917-4923.
47. C. Y. Lin, C. C. Jao, C. Lee and Y. W. Yen, "The Effect of Non-reactive Alloying Elements on the Growth Kinetics of the Intermetallic Compound between Liquid Sn-based Eutectic Solders and Ni Substrates", Journal of Alloys and Compounds, Vol. 440, No. 1-2, 2007, pp. 333-340.
48. G. Kong, A. T. Lu and Q. Y. Xu, "Interfacial Reaction Between Solid Nickel and Liquid Zinc", Journal of Wuhan University of Technology-Materials Science Edition, Vol. 23, No. 5, 2008, pp. 712-716.
49. G. Nover and K. Schubert, "The Crystal Structure of NiZn3.r", Journal of the Less-common Metals, Vol. 75, No. 1, 1980, pp. 51-63.
50. P. Villars and L. D. Calvert, Pearson's Hhandbook of Crystallographic Data for Intermetallic Phases, ASM International, Materials Park, OH, 1991, p. 4630, 4729, 5285, 5364.
51. JCPDS 06-0653.
校內:2011-07-29公開