| 研究生: |
陳楷升 Chen, Kai-Sheng |
|---|---|
| 論文名稱: |
頻域振幅編碼標籤應用於多重協定交換網路之封包切換機制的探討 Investigation of Spectral-Amplitude Coding Labels for Packet-Switching Applications over Generalized Multi-Protocol Label Switching Network |
| 指導教授: |
黃振發
Huang, Jen-Fa |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 光分碼多重擷取 、頻域振幅編碼 、通用多重協定標籤交換傳輸 、光學封包交換 |
| 外文關鍵詞: | Optical Code-Division Multiple-Access (OCDMA), spectral-amplitude-coding (SAC), generalized multi-protocol label switching (GMPLS), optical packet switching (OPS) |
| 相關次數: | 點閱:187 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
網際網路協定為目前全世界最主要的傳輸協定。為了支援大量使用者使用高位元速率服務,多重協定標籤交換傳輸是實現寬頻網際網路的熱門技術;可提供一個更具彈性、擴充性及效率更高的網路交換。光纖通訊提供高傳輸速率、高可靠度的數位通訊,因此以通用多重協定標籤交換傳輸實現光學封包交換網路,是一種令人期待的解決之道。本論文以頻域振幅編碼作為標籤格式,其具有架構簡潔及處理速度快等優點,並能搭配標籤堆疊。然而,由於光源非同調特性,解碼端會受相位導致雜訊影響,使節點產生錯誤的控制信號造成封包遺失。
因此,本文改良原有二次全等碼,以填塞位元方式,得到一組具有極低交相關值的填塞式二次全等碼。此碼型所對應的光封包標籤,在中繼節點可增加正確解碼標籤機率,使封包傳送至適當路徑,減少終端節點解調資料位元的錯誤率。另外,於標籤堆疊應用,同個波長可能堆疊不同的標籤分量,此現象正是造成相位雜訊的因素。使用低交相關值的碼,可以降低重疊波長數,系統效能相對會有較大幅度改善。
本文提出的另一種光學碼標籤為混合式分波多工及光分碼多重擷取。作者考慮了兩種標籤分配方式:將混合式標籤依序以光學碼或光波長編號,對應至標籤繞送路徑的路徑片段中,並分析此兩種架構之標籤錯誤率。由於波長分配方式能將光學碼標籤平均分配至各波長上,因此具有較少的波長重疊數。另外也最佳化光學碼標籤的通道數,使其在特定標籤數量下,能具有最低的標籤錯誤率。
本文所討論的最後一種光學碼標籤為雙極性標籤,其應用於光交換網路中,能增進標籤判別的正確率。由於雙極性標籤在解碼後,相較於單極性標籤,於信號星座圖上具有較大的漢明間距。在此標籤的效能分析中,仍以標籤錯誤率作為量化封包切換效率的參數。模擬結果顯示,雙極性標籤能有效降低系統錯誤率,並增加可堆疊的標籤數及封包傳送距離。
Internet protocol (IP) is the most widely used protocol for high-bandwidth data transmission and it has been thought as a solution to provide different high-quality services in the future. As the internet traffic increases rapidly, the network size is extended. Multi-protocol label switching (MPLS) is proposed to reduce the IP processing time because only label is processed during the packet transmission between nodes. Although MPLS partially releases the burden of IP network, packet routing still faces a bottleneck when the number of users is large. Optical packet switching (OPS) overcomes this difficulty by simplifying several layers into IP over optical network.
To implement MPLS over optical work, optical codes (OC) are used as labels for packet switching in Generalized MPLS (GMPLS) network. Among several label approaches, spectral amplitude coding (SAC) lowers system complexity and is compatible with label stacking. The label of an optical pocket is composed by different wavelength components, which are encoded according to a signature code pattern. However, due to the incoherent property of light source, the phase intensity induced noise (PIIN) appears at the forwarding node when the optical code label is de-coded. PIIN cannot simply removed by increasing the signal power because its value is proportional to the detected optical current. Therefore, we design three optical code labelling (OCL) scenarios, to increase the probability of correctly decoding the label in core nodes (CNs). Since the packet is sent to the appropriate path, the label error rate (LER) at edge node (EN) is decreased.
In the first approach, stuffed quadratic congruence code (SQC code) is proposed for optical label implementing. Because of its low cross-correlation value, the effect of PIIN can be decreased significantly. If the label can be decoded correctly, the forward node would generate proper control signal to direct the packet to a suitable path. This reduces the probability of packet missing and lowers the value of LER when optical packet is de-modulated at the end node. For the case of label stacking, labels with SQC codes can provide greater system improvements. To meet practical applications, the relation between SAC-labels and optical MPLS network performance is also analyzed in this dissertation by numerical simulation.
In the second approach, a hybrid label for optical packet switching in GMPLS network is proposed by combining SAC optical code-division multiple access (OCDMA) with wavelength division multiplexing (WDM). The author considers two label assignment scenarios. Hybrid labels are sequentially assigned to path segments in a label switching path (LSP) based on code index or wavelength index. LER performance of these two label assignment scenarios are also analyzed. Better LER results is achieved by sequential wavelength assignment, due to the similar label numbers among wavelengths. Furthermore, the optimal channel number is derived to minimize the LER under a specific number of stacked labels.
In the final approach, bipolar OCL is employed in GMPLS network to improve the efficiency of label-recognition and network throughput. Label switching capabilities in LER is greatly reduced since the proposed bipolar OCL enlarges the Hamming distance of the star diagram of the decoded label signals. The proposed label mapping mechanism is also achieved through SAC in physical layer. In performance analysis, a numerical simulation of LER is presented to quantify the switching efficiency. Results show the proposed bipolar coding technique reduces LER in switching process, resulting in an extension of LSP in GMPLS core network.
[1] H. Alshaer and J.M.H. Elmirghani, “Multilayer dynamic traffic grooming with constrained differentiated resilience in IP/MPLS-over-WDM networks,” IEEE Trans. Netw. Service Manag., vol. 9, no. 1, pp. 60-72, Mar. 2012.
[2] A. Kadohata, T. Tanaka, A. Watanabe, A. Hirano, H. Hasegawa, and K. Sato, “Differential reliability path accommodation design and reconfiguration in virtualized multi-layer transport network,” IEICE Trans. Commun., vol. 98, no. 11, pp. 2151-2159, Nov. 2015.
[3] Y. Teruaki, I. Katsuyoshi, K. Hiroyuki, and Y. Suguru, “Proposal for adaptive bandwidth allocation using one-way feedback control for MPLS networks,” IEICE Trans. Commun., vol. 90, no.12, pp. 3530-3540, Dec. 2007.
[4] I.S. Hwang and A.T. Liem, “A hybrid scalable peer-to-peer IP-based multimedia services architecture in Ethernet passive optical networks,” IEEE/OSA J. Lightw. Technol., vol. 31, no. 2, pp. 213-222, Jan. 2013.
[5] M. Fiorani, M. Casoni, and S. Aleksic, “Hybrid optical switching for an energy -efficient internet core,” IEEE Internet Computing, vol. 17, no.1, pp.14-22, Jan. 2013.
[6] A.V. Osadchiy, N. Guerrero, J.B. Jensen, and I.T. Monroy, “Coherent spectral amplitude coded label detection for DQPSK payload signals in packet -switched metropolitan area networks,” Opt. Fiber Technol., vol. 17, no. 3, pp. 141-144, May 2011.
[7] S.J.B. Yoo, “Energy efficiency in the future internet: the role of optical packet switching and optical-label switching,” IEEE J. Sel. Topics in Quantum Electron., vol. 17, no. 2, pp. 406-418, Mar. 2011.
[8] A. Banerjee, J. Drake, J.P. Lang, B. Turner, K. Kompella, and Y. Rekhter, “Generalized multiprotocol label switching: an overview of routing and management enhancements,” IEEE Commun. Mag., vol. 39, no. 1, pp. 144-150, Jan. 2001.
[9] D.J. Blumenthal, B. Olsson, G. Rossi, T.E. Dimmick, L. Rau, M. Masanović, O. Lavrova, R. Doshi, O. Jerphagnon, J.E. Bowers, V. Kaman, L.A. Coldren, J. Barton, “All-optical label swapping networks and technologies,” IEEE/OSA J. Lightw. Technol., vol. 18, no. 12, pp. 2058-2075, Dec. 2000.
[10] K. H. Liu, IP Over WDM. New York: Wiley, 2002.
[11] A. Banerjee, J. Drake, J. P. Lang, and B. Turner, “Generalized multiprotocol label switching: An overview of signaling enhancements and recovery techniques,” IEEE Commun. Mag., vol. 39, no. 7, pp. 144-151, Jul. 2001.
[12] S.J.B. Yoo, “Optical packet and burst switching technologies for the future photonic internet,” IEEE/OSA J. Lightw. Technol., vol. 24, no. 12, pp. 4468-4492, Dec. 2006.
[13] R. Takahashi, T. Nakahara, K. Takahata, H. Takenouchi, T. Yasui, N. Kondo, and H. Suzuki, “Ultrafast optoelectronic packet processing for asynchronous, optical -packet-switched networks,” J. Opt. Netw., vol. 3 no. 12, pp. 914-930, Nov. 2004.
[14] W. Imajuku et al., “A multi-area MPLS/GMPLS interoperability trial over ROADM/OXC network,” IEEE Commun. Mag., vol. 47, no. 2, pp. 168-175, Feb. 2009.
[15] L. Brewka, A. Gavler, H. Wessing, and L. Dittmann, “Including 10-gigabit -capable passive optical network under end-to-end generalized multi-protocol label switching provisioned quality of service,” Fiber Integr. Optics, vol. 31, no. 2, pp. 133-146, Apr. 2012.
[16] Y.G. Wen, Y. Zhang, and L.K. Chen, “On architecture and limitation of optical multiprotocol label switching (MPLS) networks using optical -orthogonal-code (OOC)/wavelength label,” Opt. Fiber Technol., vol. 8, pp. 43-70, 2002.
[17] A.M.J. Koonen, N. Yan, J.V. Olmos, I.T. Monroy, C. Peucheret, E.V. Breusegem, and E. Zouganeli, “Label-controlled optical packet routing -technologies and applications,” IEEE J. Sel. Topics in Quantum Electron., vol. 13, no. 5, pp. 1540-1550, Oct. 2007.
[18] Z. Zhu, V.J. Hernandez, M. Y. Jeon, J. Cao, Z. Pan, and S.J.B. Yoo, “RF photonics signal processing in subcarrier multiplexed optical-label switching communication systems,” IEEE/OSA J. Lightw. Technol., vol. 21, no. 12, pp. 3155-3166, Dec. 2003.
[19] H.J. Lee, V. Hernandez, V.K. Tsui and S.J.B. Yoo, “Simple, polarization -independent, and dispersion-insensitive SCM signal extraction technique for optical switching systems applications,” Electron. Lett., vol. 37, no. 20, pp. 1240-1241, Sep. 2001.
[20] K. Kitayama, N. Wada, and H. Sotobayashi, “Architectural considerations for photonic IP router based upon optical code correlation,” IEEE/OSA J. Lightw. Technol., vol. 18, no. 12, pp. 1834-1844, Dec. 2000.
[21] G. Cincotti, “Full optical encoders/decoders for photonic IP routers,” IEEE /OSA J. Lightw. Technol., vol. 22, no. 2, pp. 337-342, Feb. 2004.
[22] Y.M. Lin, M.C. Yuang, S.L. Lee, and W.I. Way, “Using superimposed ASK label in a 10-Gb/s multi-hop all-optical label swapping system,” IEEE/OSA J. Lightw. Technol., vol. 22, no. 2, pp. 351-361, Feb. 2004.
[23] E.N. Lallas, N. Skarmoutsos, and D. Syvridis, “Coherent encoding of optical FSK header for all optical label swapping systems,” IEEE/OSA J. Lightw. Technol., vol. 23, no. 3, pp. 1199-1209, Mar. 2005.
[24] M.Y. Jeon, Z. Pan, J. Cao, Y. Bansal, J. Taylor, Z. Wang, V. Akella, K. Okamoto, S. Kamei, Z. Pan, and S.J.B. Yoo, “Demonstration of all-optical packet switching routers with optical label swapping and 2R regeneration for scalable optical label switching network applications,” IEEE/OSA J. Lightw. Technol., vol. 21, no. 11, pp. 2723-2733, Nov. 2003.
[25] A.E. Willner, D. Gurkan, A.B. Sahin, J.E. McGeehan, and M.C. Hauer, “All -optical address recognition for optically-assisted routing in next-generation optical networks,” IEEE Commun. Mag., vol. 41, no. 5, pp. 38-44, May 2003.
[26] R. Xu, Q. Gong, and P. Ye, “A novel IP with MPLS over WDM-based broad-band wavelength switched IP network,” IEEE/OSA J. Lightw. Technol., vol. 19, no. 5, pp. 596-602, May 2001.
[27] P. Seddighian, S. Ayotte, J.B. Rosas-Fernandez, J. Penon, L.A. Rusch, and S. LaRochelle, “Label stacking in photonic packet-switched networks with spectral amplitude code labels,” IEEE/OSA J. Lightw. Technol., vol. 25, no. 2, pp. 463-471, Feb. 2007.
[28] C. Habib, V. Baby, L.R. Chen, A. Delisle-Simard, and S. LaRochelle, “All-optical swapping of spectral amplitude code labels using nonlinear media and semiconductor fiber ring lasers,” IEEE J. Sel. Topics in Quantum Electron., vol. 14, no. 3, pp. 879-888, May 2008.
[29] Y.B. M'Sallem, P. Seddighian, L.A. Rusch, and S. LaRochelle, “Optical packet switching via FWM processing of time-stacked weight-2 codes,” IEEE Photonics Technol. Lett., vol. 20, no. 20, pp. 1712-1714, Oct. 2008.
[30] T. Khattab and H .Alnuweiri, “Optical CDMA for all-optical sub-wavelength switching in core GMPLS networks,” IEEE J. Sel. Areas Commun., vol. 25, no. 5 pp. 905-921, May 2007.
[31] Z.A. El-Sahn et al., “Experimental demonstration of a SAC-OCDMA PON with burst-mode reception: Local versus centralized sources,” IEEE/OSA J. Lightw. Technol., vol. 26, no. 10, pp. 1192-1203, Jun. 2008.
[32] K. I. Kitayama and M. Murata, “Versatile optical code-based MPLS for circuit, burst, and packet switchings,” IEEE/OSA J. Lightw. Technol., vol. 21, no. 11, pp. 2753-2764, Dec. 2003.
[33] R. Kazemi, A. Rashidinejad, D. Nashtaali, and J.A. Salehi, “Virtual Optical buffers: A novel interpretation of OCDMA in packet switch networks,” IEEE /OSA J. Lightw. Technol., vol. 30, no. 18, pp. 2964-2975, Sep. 2012.
[34] G. Cincotti, W. Naoya, and K. Kitayama, “Characterization of a full encoder/decoder in the AWG configuration for code-based photonic routers—Part I: Modeling and design,” IEEE/OSA J. Lightw. Technol., vol. 24, no. 1, pp. 103-112, Feb. 2006.
[35] W. Naoya, G. Cincotti, S. Yoshima, N. Kataoka, and K. Kitayama, “Characterization of a full encoder/decoder in the AWG configuration for code-based photonic routers—Part II: Experiments and applications,” IEEE/OSA J. Lightw. Technol., vol. 24, no. 1, pp. 113-121, Feb. 2006.
[36] G. Manzacca, A. M. Vegni, W. N. Xu Wang, G. Cincotti, and K. I. Kitayama, “Performance analysis of a multiport encoder/decoder in OCDMA scenario,” IEEE Sel. Topics Quantum Electron., vol. 13, no. 5, pp. 1415-1421, Oct. 2007.
[37] N. Wada and F. Kubota, “Cutting-Edge Technologies on Broadband and Scalable Photonic Network Packet switched networks based on all-optical label processing,” Opt. Rev., vol. 11, no. 2, pp. 106-112, 2004.
[38] K. Kitayama, “Code division multiplexing lightwave networks based upon optical code conversion,” IEEE J. Sel. Areas Commun., vol. 16, no. 7, pp. 1309-1319, Sep. 1998.
[39] J.A. Salehi, A.M. Weiner, and J.P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” IEEE/OSA J. Lightw. Technol., vol. 8, no. 3, pp. 478-491, Mar. 1990.
[40] J.A. Salehi, “Code division multiple-access techniques in optical fiber networks—Part I: Fundamental principles,” IEEE Trans. Commun., vol. 37, no. 8, pp. 824-833, Aug. 1989.
[41] F.R.K. Chung, J.A. Salehi, and V.K. Wei, “Optical orthogonal codes: Design, analysis, and application,” IEEE Trans. Inf. Theory, vol. 35, no. 3, pp. 595-604, May 1989.
[42] J.A. Salehi and C.A. Brackett, “Code division multiple-access techniques in optical fiber networks—Part II: System performance analysis,” IEEE Trans. Commun., vol. 37, no. 8, pp. 834-842, Aug. 1989.
[43] S. Mashhadi and J.A. Salehi, “Code division multiple-access technique in optical fiber networks, part III: Optical AND logic gate receiver structure with generalized optical orthogonal codes,” IEEE Trans. Commun., vol. 54, no. 8, pp. 1457-1468, Aug. 2006.
[44] I.P. Kaminow, P.P. Iannone, J. Stone, and L.W. Stulz, “FDMA-FSK star network with a tunable optical filter demultiplexer,” IEEE/OSA J. Lightw. Technol., vol. 6, no. 9, pp. 1406-1414, Sep. 1988.
[45] S. Etemad, P. Toliver, R. Menendez, J. Young, T. Banwell, S. Galli, J. Jackel, P. Delfyett, C. Pric, and T. Turpin, “Spectrally efficient optical CDMA using coherent phase-frequency coding,” IEEE, Photonics Technol. Lett., vol. 17, no. 4, pp. 929-931, Apr. 2005.
[46] J. Penon, W. Mathlouthi, S. LaRochelle, and L. A. Rusch, “An innovative receiver for incoherent SAC-OCDMA enabling SOA-based noise cleaning: Experimental validation,” IEEE/OSA J. Lightw. Technol., vol. 27, no. 2, pp. 108-116, Feb. 2009.
[47] S. P. Tseng and J. Wu, “A new code family suitable for high-rate SAC OCDMA PONs applications,” IEEE J. Sel. Areas Commun., vol. 28, no. 6, pp. 827-837, Aug. 2010.
[48] T.H. Abd, S.A. Aljunid, H.A. Fadhil, R.A. Ahmad, and N.M. Saad, “Development of a new code family based on SAC-OCDMA system with large cardinality for OCDMA network,” Opt. Fiber Technol., vol. 17, no. 4, pp. 273-280, Jul. 2011.
[49] C.C. Yang, J.F. Huang, and S.P. Tseng, “Optical CDMA network codecs structured with M-sequence codes over waveguide-grating routers,” IEEE Photonics Technol. Lett., vol. 16, no. 2, pp. 641-643, Feb. 2004.
[50] H.M.R. Al-Khafaji, R. Ngah, S.A. Aljunid, and T.A. Rahman, “A new two-code keying scheme for SAC-OCDMA systems enabling bipolar encoding,” J. Modern Optics, vol. 62, no. 5, pp. 327-335, Apr. 2015.
[51] M. Noshad and K. Jamshidi, “Bounds for the BER of codes with fixedcross correlation in SAC-OCDMA systems,” IEEE/OSA J. Lightw. Technol., vol. 29, no. 13, pp. 1944-1950, Jul. 2011.
[52] C.C. Yang, “Compact optical CDMA passive optical network with differentiated services,” IEEE Trans. Commun., vol. 57, no. 8 pp. 2402-2409, Aug. 2009.
[53] N. Kostinski, K. Kravtsov, and P. R. Prucnal, “Demonstration of an all-optical OCDMA encryption and decryption system with Variable two-code keying,” IEEE Photonics Technol. Lett., vol. 20, no. 24, pp. 2045-2047, Dec. 2008.
[54] M. Kavehrad and D. Zaccarin, “Optical code-division-multiplexed systems based on spectral encoding of non-coherent sources,” IEEE/OSA J. Lightw. Technol., vol. 13, no. 3, pp. 534-545, Mar. 1995.
[55] Z. Wei, H.M.H. Shalaby, and H. Ghafouri-Shiraz, “Modified quadratic congruence codes for fiber bragg grating based spectral-amplitude-coding optical CDMA systems,” IEEE/OSA J. Lightw. Technol., vol. 19, no. 9, pp. 1274 -1281, Sep. 2001.
[56] K.S. Chen, C.C. Yang, and J.F. Huang, “Using stuffed quadratic congruence codes for SAC labels in optical packet switching network,” IEEE Commun. Lett., vol. 19, no. 7, pp. 1093-1096, Jul. 2015.
[57] W. Yubao and L. Baoxiang, “Optical code-labeled router based on OCDM,” IEEE J. Opt. Commun. Netw., vol. 2, no. 2, pp. 111-116, Mar. 2010.
[58] H. Shaowei, K. Baba, M. Murata, and K. Kitayama, “Variable-bandwidth optical paths: Comparison between optical code-labelled path and OCDM path,” IEEE/OSA J. Lightw. Technol., vol. 24, no. 10, pp. 3563-3573, Oct. 2006.
[59] S. L. Danielsen, P. B. Hansen, and K. E. Stubkjaer, “Wavelength conversion in optical packet switching,” IEEE/OSA J. Lightw. Technol., vol. 16, no. 12, pp. 2095-2108, Dec. 1998.
[60] H. Beyranvand and J. A. Salehi, “Multi-service provisioning and quality of service (QoS) guarantee in WDM optical code switched GMPLS core network,” IEEE/OSA J. Lightw. Technol., vol. 27, no. 12, pp. 1754-1762, Jun. 2009.
[61] R.A. Horn and C.R. Johnson, Matrix Analysis, 2nd ed., Cambridge, UK: Cambridge University Press, 2012.
[62] S. Arora and B. Barak, Computational Complexity: A Modern Approach, Cambridge, UK: Cambridge University Press, 2009.
校內:2020-09-01公開