簡易檢索 / 詳目顯示

研究生: 吳旻純
Wu, Min-Chun
論文名稱: 石斑魚在神經壞死病毒感染下熱休克反應和自噬作用之交互作用研究
Study of the crosstalk between heat shock response and autophagy under NNV infection in groupers
指導教授: 陳宗嶽
Chen, Tzong-Yueh
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技與產業科學系
Department of Biotechnology and Bioindustry Sciences
論文出版年: 2020
畢業學年度: 109
語文別: 英文
論文頁數: 91
中文關鍵詞: 熱休克反應自噬作用神經壞死病毒
外文關鍵詞: heat shock response, autophagy, nervous necrosis virus (NNV)
相關次數: 點閱:131下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 神經壞死病毒(NNV)的爆發一直是導致石斑魚高死亡率的主要問題,且在NNV誘導的逆境下,體內穩態(homeostasis)的平衡會被破壞並使蛋白質失去功能。而為了維持宿主體內穩態,在真核生物中,有兩個主要蛋白質管理系統包括熱休克反應及自噬作用,但在病毒感染過程中石斑魚如何介導兩種穩態反應仍尚不清楚。因此在本研究中,分別利用HSF1和LC3作為各自的標記來了解這兩者之間的交互關係。在獲得及失去功能的實驗中,發現熱休克反應會控制自噬作用反應,但當自噬作用足夠時則會對熱休克反應形成負向回饋,顯示熱休克反應和自噬作用能夠彼此協調。而在病毒逆境下,熱休克(36°C)或大量表現HSF1b具有較高的病毒RNA2表現會促進NNV複製;但在雷帕黴素處理或大量表現LC3則會減少病毒量,這顯示兩者在對抗NNV感染時的作用則相反。另一方面,熱休克反應和自噬作用間的交互作用則會拮抗NNV CP的表達,顯示兩種反應間的平衡會決定感染的嚴重程度。因此綜合上述結果,熱休克反應的抑制結合自噬作用的活化可能在對抗NNV感染上可以提供更好的防護效果。而這些發現也幫助我們了解防禦機制間的協調作用,進而提高石斑魚存活率並減少其經濟損失。

    The outbreak of nervous necrosis virus (NNV) has been the major problem that causes high mortality in groupers. Under NNV induced stress, the balance of homeostasis is disrupted and proteins become dysfunctional. In order to maintain host homeostasis, there are two main protein quality control in eukaryotes: heat shock response (HSR) and autophagy. However, it still remains unknown how groupers mediate two homeostatic responses during viral infection. In this study, HSF1 and LC3 are used as markers to determine the interaction between both responses. Through gain and loss of function experiments, HSR controlled autophagy but sufficient autophagy was negatively fed back to HSR, showing that HSR and autophagy regulated each other. Under stress of NNV infection, heat shock (36°C) or overexpression of HSF1b promoted NNV replication with higher viral RNA2 expression, but rapamycin treatment or overexpression of LC3 reduced the viral load, indicating that two responses had opposite roles against NNV infection. On the other hand, the interaction between HSR and autophagy counteracted the degree of NNV CP expression, suggesting that the severity of an infection depended on the balance of these two responses. Taken together, HSR inhibition combined with autophagy activation may provide better protection against NNV infection. These findings also help us understand the coordination between the defense mechanisms to improve the grouper survival and reduce the economic loss.

    Chinese Abstract (中文摘要) I Abstract II Acknowledgements VI Table of Contents VII Contents of Tables XI Contents of Figures XII Abbreviation List XV 1. Research Background 1 1-1 The grouper aquaculture industry 1 1-2 Stress in aquatic organisms 2 1-3 Nervous necrosis virus (NNV) 3 1-4 Preventive measures against diseases 4 1-5 Host defense mechanisms on protein homeostasis 5 1-6 Heat shock response 7 1-7 The role of HSF1 in heat shock response 7 1-8 Autophagy 9 1-9 The role of LC3 in autophagy 10 1-10 The interaction between heat shock response and autophagy 11 1-11 Host defense mechanisms that are affected by viral invasion 12 1-12 Heat shock response and virus 12 1-13 Autophagy and virus 13 1-14 Research objectives 15 2. Materials and Methods 16 2-1 Heat shock treatment 16 2-2 Rapamycin treatment 16 2-3 Gain of function by plasmid transfection 16 2-4 Loss of function by siRNA-mediated knockdown 18 2-5 NNV infection 19 2-6 RNA extraction 19 2-7 RNA electrophoresis analysis 20 2-8 Reverse transcription for cDNA synthesis 21 2-9 Real-time polymerase chain reaction analysis 22 2-10 Mini-prepared plasmid extraction 22 2-11 DNA electrophoresis analysis 24 2-12 Thawing of frozen cells 24 2-13 Cell subculture 25 2-14 Cryopreservation of cells 26 2-15 Virus culture in vitro 26 2-16 Immunofluorescence staining 27 2-17 Total protein extraction from cells 28 2-18 Bicinchoninic acid assay (BCA assay) 29 2-19 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS- PAGE) 29 2-20 Western blot analysis 30 2-21 Western blot membrane stripping 32 3. Results 33 3-1 Effect of heat shock (36°C) treatment on LC3 regulation 33 3-2 Effect of rapamycin treatment on HSF1b regulation 34 3-3 Effect of HSF1 overexpression and knockdown on LC3 expression 34 3-4 Effect of LC3 overexpression and knockdown on HSF1 expression 35 3-5 Effect of heat shock response under NNV infection 36 3-6 Effect of autophagy under NNV infection 38 3-7 The interaction of heat shock response and autophagy under NNV infection 40 4. Discussions 42 4-1 Effect of heat shock response and autophagy through endogenous induction 42 4-2 Effect of heat shock response on the regulation of autophagy regulation 42 4-3 Effect of autophagy on the regulation of heat shock response 43 4-4 Effect of heat shock response on NNV replication 45 4-5 Effect of autophagy on NNV replication 46 4-6 The balance between heat shock response and autophagy affects NNV replication 47 4-7 Conclusion 48 References 50 Tables 60 Figures 64

    Åkerfelt, M., Morimoto, R. I., and Sistonen, L. Heat shock factors: integrators of cell stress, development and lifespan. Nature Reviews Molecular Cell Biology 11, 545-555, 2010.

    Anita, N. S., and Dewi, N. N. Evaluation of hatching rate, growth performance, and survival rate of cantang grouper (Epinephelus fuscoguttatus×lanceolatus) in concrete pond at Situbondo, East Java, Indonesia. IOP Conference Series: Earth and Environmental Science 441, 1-7, 2020.

    Assefa, A., and Abunna, F. Maintenance of fish health in aquaculture: review of epidemiological approaches for prevention and control of infectious disease of fish. Veterinary Medicine International 2018, 1-10, 2018.

    Barth, S., Glick, D., and Macleod, K. F. Autophagy: assays and artifacts. The Journal of Pathology 221, 117-124, 2010.

    Barton, B. A. Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integrative and Comparative Biology 42, 517-525, 2002.

    Breuil, G., Bonami, J. R., Pepin, J. F., and Pichot, Y. Viral infection (picorna-like virus) associated with mass mortalities in hatchery-reared sea-bass (Dicentrarchus labrax) larvae and juveniles. Aquaculture 97, 109-116, 1991.

    Bricknell, I., and Dalmo, R. A. The use of immunostimulants in fish larval aquaculture. Fish and Shellfish Immunology 19, 457-472, 2005.

    Cao, S. S., and Kaufman, R. J. Unfolded protein response. Current Biology 22, R622-626, 2012.

    Chen, N. C., Yoshimura, M., Guan, H. H., Wang, T. Y., Misumi, Y., Lin, C. C., Chuankhayan, P., Nakagawa, A., Chan, S. I., and Tsukihara, T. Crystal structures of a piscine betanodavirus: mechanisms of capsid assembly and viral infection. PLoS Pathogens 11, 1-25, 2015.

    Chen, S. F., Kang, M. L., Chen, Y. C., Tang, H. W., Huang, C. W., Li, W. H., Lin, C. P., Wang, C. Y., Wang, P. Y., and Chen, G. C. Autophagy-related gene 7 is downstream of heat shock protein 27 in the regulation of eye morphology, polyglutamine toxicity, and lifespan in Drosophila. Journal of Biomedical Science 19, 1-10, 2012.

    Chen, Y. M., Kuo, C. E., Wang, T. Y., Shie, P. S., Wang, W. C., Huang, S. L., Tsai, T. J., Chen, P. P., Chen, J. C., and Chen, T. Y. Cloning of an orange-spotted grouper Epinephelus coioides heat shock protein 90AB (HSP90AB) and characterization of its expression in response to nodavirus. Fish and Shellfish Immunology 28, 895-904, 2010.

    Chen, Y. M., Su, Y. L., Lin, J. H. Y., Yang, H. L., and Chen, T. Y. Cloning of an orange-spotted grouper (Epinephelus coioides) Mx cDNA and characterisation of its expression in response to nodavirus. Fish and Shellfish Immunology 20, 58-71, 2006.

    Chen, Y. M., Wang, T. Y., and Chen, T. Y. Immunity to betanodavirus infections of marine fish. Developmental and Comparative Immunology 43, 174-183, 2014.

    Chi, S. C., Hu, W. W., and Lo, B. J. Establishment and characterization of a continuous cell line (GF-1) derived from grouper, Epinephelus coioides (Hamilton): a cell line susceptible to grouper nervous necrosis virus (GNNV). Journal of Fish Diseases 22, 173-182, 1999.

    Chi, S. C., Lo, C. F., Kou, G. H., Chang, P. S., Peng, S. E., and Chen, S. N. Mass mortalities associated with viral nervous necrosis (VNN) disease in two species of hatchery‐reared grouper, Epinephelus fuscogutatus and Epinephelus akaara (Temminck and Schlegel). Journal of Fish Diseases 20, 185-193, 1997.

    Chikte, S., Panchal, N., and Warnes, G. Use of LysoTracker dyes: a flow cytometric study of autophagy. Cytometry Part A 85, 169-178, 2014.

    Chiramel, A. I., Brady, N. R., and Bartenschlager, R. Divergent roles of autophagy in virus infection. Cells 2, 83-104, 2013.

    Choi, Y., Bowman, J. W., and Jung, J. U. Autophagy during viral infection-a double-edged sword. Nature Reviews Microbiology 16, 341-354, 2018.

    Colombo, L., Belvedere, P., Pickering, A. D., and Schreck, C. B. Stress inducing factors and stress reaction in aquaculture. Aquaculture Europe, European Aquaculture Society, Oostende, 93-121, 1990.

    Dai, X., Hakizimana, O., Zhang, X., Kaushik, A. C., and Zhang, J. Orchestrated efforts on host network hijacking: processes governing virus replication. Virulence 11, 183-198, 2020.

    Dana, H., Chalbatani, G. M., Mahmoodzadeh, H., Karimloo, R., Rezaiean, O., Moradzadeh, A., Mehmandoost, N., Moazzen, F., Mazraeh, A., and Marmari, V. Molecular mechanisms and biological functions of siRNA. International Journal of Biomedical Science 13, 48-57, 2017.

    Das, G., Shravage, B. V., and Baehrecke, E. H. Regulation and function of autophagy during cell survival and cell death. Cold Spring Harbor Perspectives in Biology 4, 1-14, 2012.

    Desai, S., Liu, Z., Yao, J., Patel, N., Chen, J., Wu, Y., Ahn, E. E. Y., Fodstad, O., and Tan, M. Heat shock factor 1 (HSF1) controls chemoresistance and autophagy through transcriptional regulation of autophagy-related protein 7 (ATG7). Journal of Biological Chemistry 288, 9165-9176, 2013.

    Dokladny, K., Myers, O. B., and Moseley, P. L. Heat shock response and autophagy-cooperation and control. Autophagy 11, 200-213, 2015.

    Dokladny, K., Zuhl, M. N., Mandell, M., Bhattacharya, D., Schneider, S., Deretic, V., and Moseley, P. L. Regulatory coordination between two major intracellular homeostatic systems heat shock response and autophagy. Journal of Biological Chemistry 288, 14959-14972, 2013.

    Duarte, C. M., Marbá, N., and Holmer, M. Rapid domestication of marine species. Science 316, 382-383, 2007.

    FAO. Yearbook of fishery and aquaculture statistics 2018. Food and Agriculture Organization of United Nation, Italy, 2020.

    Feng, Y., He, D., Yao, Z., and Klionsky, D. J. The machinery of macroautophagy. Cell Research 24, 24-41, 2014.

    Gabriel, U. U., and Akinrotimi, O. A. Management of stress in fish for sustainable aquaculture development. Researcher 3, 28-38, 2011.

    Glazebrook, J. S., Heasman, M. P., and De Beer, S. W. Picorna‐like viral particles associated with mass mortalities in larval barramundi, Lates calcarifer Bloch. Journal of Fish Diseases 13, 245-249, 1990.

    Glick, D., Barth, S., and Macleod, K. F. Autophagy: cellular and molecular mechanisms. Journal of Pathology 221, 3-12, 2010.

    Glotzer, J. B., Saltik, M., Chiocca, S., Michou, A. I., Moseley, P., and Cotten, M. Activation of heat-shock response by an adenovirus is essential for virus replication. Nature 407, 207-211, 2000.

    Gomez-Pastor, R., Burchfiel, E. T., and Thiele, D. J. Regulation of heat shock transcription factors and their roles in physiology and disease. Nature Reviews Molecular Cell Biology 19, 4-19, 2018.

    Hansen, M., Rubinsztein, D. C., and Walker, D. W. Autophagy as a promoter of longevity: insights from model organisms. Nature Reviews Molecular Cell Biology 19, 579-593, 2018.

    Harikrishnan, R., Balasundaram, C., and Heo, M. S. Fish health aspects in grouper aquaculture. Aquaculture 320, 1-21, 2011.

    Hasday, J. D., and Singh, I. S. Fever and the heat shock response: distinct, partially overlapping processes. Cell Stress and Chaperones 5, 471-480, 2000.

    Heemstra, P. C., and Randall, J. E. . Food and Agriculture Organization Fisheries Synopsis 16, 522, 1993.

    Higuchi-Sanabria, R., Frankino, P., Paul, J., Tronnes, S., and Dillin, A. A futile battle? protein quality control and the stress of aging. Developmental Cell 44, 139-163, 2018.

    Hipp, M. S., Kasturi, P., and Hartl, F. U. The proteostasis network and its decline in ageing. Nature Reviews Molecular Cell Biology 20, 421-435, 2019.

    Jackson, W. T., Giddings Jr, T. H., Taylor, M. P., Mulinyawe, S., Rabinovitch, M., Kopito, R. R., and Kirkegaard, K. Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biology 3, 861-871, 2005.

    Jo, E. K. Interplay between host and pathogen: immune defense and beyond. Experimental and Molecular Medicine 51, 1-3, 2019.

    Kappel, M., Diamant, M., Hansen, M. B., Klokker, M., and Pedersen, B. K. Effects of in vitro hyperthermia on the proliferative response of blood mononuclear cell subsets, and detection of interleukins 1 and 6, tumour necrosis factor-alpha and interferon-gamma. Immunology 73, 304-308, 1991.

    Kim, T. K., and Eberwine, J. H. Mammalian cell transfection: the present and the future. Analytical and Bioanalytical Chemistry 397, 3173-3178, 2010.

    Klionsky, D. J., and Codogno, P. The mechanism and physiological function of macroautophagy. Journal of Innate Immunity 5, 427-433, 2013.

    Korangy, F., Hoechst, B., Manns, M. P., and Greten, T. F. Immune responses in hepatocellular carcinoma. Digestive Diseases 28, 150-154, 2010.

    Kumsta, C., Chang, J. T., Schmalz, J., and Hansen, M. Hormetic heat stress and HSF-1 induce autophagy to improve survival and proteostasis in C. elegans. Nature Communications 8, 1-12, 2017.

    Lee, H. K., Lund, J. M., Ramanathan, B., Mizushima, N., and Iwasaki, A. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 315, 1398-1401, 2007.

    Li, S., Zhou, Y., Fan, J., Cao, S., Cao, T., Huang, F., Zhuang, S., Wang, Y., Yu, X., and Mao, H. Heat shock protein 72 enhances autophagy as a protective mechanism in lipopolysaccharide-induced peritonitis in rats. The American Journal of Pathology 179, 2822-2834, 2011.

    Livak, K. J., and Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25, 402-408, 2001.

    Mao, S. H. Charaterization of autophagy by LC3 under stress condition in orange-spotted grouper (Epinephelus coioides). Master thesis. Retrieved from National Cheng Kung University of Department of Biothechnology and Bioindustry Sciences. 2018.

    Mayer, M. P. Recruitment of Hsp70 chaperones: a crucial part of viral survival strategies. Reviews of Physiology, Biochemistry and Pharmacology, Springer, Berlin, 1-46, 2005.

    Mori, K. I., Nakai, T., Muroga, K., Arimoto, M., Mushiake, K., and Furusawa, I. Properties of a new virus belonging to Nodaviridae found in larval striped jack (Pseudocaranx dentex) with nervous necrosis. Virology 187, 368-371, 1992.

    Morimoto, R. I., and Santoro, M. G. Stress-inducible responses and heat shock proteins: new pharmacologic targets for cytoprotection. Nature Biotechnology 16, 833-838, 1998.

    Munday, B. L., Kwang, J., and Moody, N. Betanodavirus infections of teleost fish: a review. Journal of Fish Diseases 25, 127-142, 2002.

    Nakai, T., Sugaya, T., Nishioka, T., Mushiake, K., and Yamashita, H. Current knowledge on viral nervous necrosis (VNN) and its causative betanodaviruses. The Israeli Journal of Aquaculture Bamidgeh 61, 198-207, 2009.

    Nishizawa, T., Furuhashi, M., Nagai, T., Nakai, T., and Muroga, K. Genomic classification of fish nodaviruses by molecular phylogenetic analysis of the coat protein gene. Applied and Environmental Microbiology 63, 1633-1636, 1997.

    Nolan, T., Hands, R. E., and Bustin, S. A. Quantification of mRNA using real-time RT-PCR. Nature Protocols 1, 1559-1582, 2006.

    O'donnell, V., Pacheco, J. M., LaRocco, M., Burrage, T., Jackson, W., Rodriguez, L. L., Borca, M. V., and Baxt, B. Foot-and-mouth disease virus utilizes an autophagic pathway during viral replication. Virology 410, 142-150, 2011.

    Orvedahl, A., MacPherson, S., Sumpter, R., Tallóczy, Z., Zou, Z., and Levine, B. Autophagy protects against Sindbis virus infection of the central nervous system. Cell Host and Microbe 7, 115-127, 2010.

    Paludan, C., Schmid, D., Landthaler, M., Vockerodt, M., Kube, D., Tuschl, T., and Münz, C. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 307, 593-596, 2005.

    Pierre, S., Gaillard, S., Prévot‐D'Alvise, N., Aubert, J., Rostaing‐Capaillon, O., Leung‐Tack, D., and Grillasca, J. P. Grouper aquaculture: Asian success and Mediterranean trials. Aquatic Conservation: Marine and Freshwater Ecosystems 18, 297-308, 2008.

    Pinsky, M. L., and Byler, D. Fishing, fast growth and climate variability increase the risk of collapse. Proceedings of the Royal Society B: Biological Sciences 282, 1-9, 2015.

    Rao, Y., Wan, Q., Su, H., Xiao, X., Liao, Z., Ji, J., Yang, C., Lin, L., and Su, J. ROS-induced HSP70 promotes cytoplasmic translocation of high-mobility group box 1b and stimulates antiviral autophagy in grass carp kidney cells. Journal of Biological Chemistry 293, 17387-17401, 2018.

    Rawat, P., and Mitra, D. Cellular heat shock factor 1 positively regulates human immunodeficiency virus-1 gene expression and replication by two distinct pathways. Nucleic Acids Research 39, 5879-5892, 2011.

    Rehman, S., Gora, A. H., Ahmad, I., and Rasool, S. I. Stress in aquaculture hatcheries: source, impact and mitigation. International Journal of Current Microbiology and Applied Sciences 6, 3030-3045, 2017.

    Richter, K., Haslbeck, M., and Buchner, J. The heat shock response: life on the verge of death. Molecular Cell 40, 253-266, 2010.

    Ritossa, F. A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 18, 571-573, 1962.

    Rottmann, R., Francis-Floyd, R., and Durborow, R. The role of stress in fish disease. Southern Regional Aquaculture Center, Stoneville, 1-4, 1992.

    Sadler, A. J., and Williams, B. R. G. Interferon-inducible antiviral effectors. Nature Reviews Immunology 8, 559-568, 2008.

    Sahu, M. K., Swarnakumar, N. S., Sivakumar, K., Thangaradjou, T., and Kannan, L. Probiotics in aquaculture: importance and future perspectives. Indian Journal of Microbiology 48, 299-308, 2008.

    Santoro, M. G., Amici, C., and Rossi, A. Role of heat shock proteins in viral infection. Prokaryotic and eukaryotic heat shock proteins in infectious disease, Springer, Dordrecht, 51-84, 2009.

    Sen, R., Nayak, L., and De, R. K. A review on host–pathogen interactions: classification and prediction. European Journal of Clinical Microbiology and Infectious Diseases 35, 1581-1599, 2016.

    Serwer, P. Agarose gels: properties and use for electrophoresis. Electrophoresis 4, 375-382, 1983.

    Singh, I. S., Gupta, A., Nagarsekar, A., Cooper, Z., Manka, C., Hester, L., Benjamin, I. J., He, J. R., and Hasday, J. D. Heat shock co-activates interleukin-8 transcription. American Journal of Respiratory Cell and Molecular Biology 39, 235-242, 2008.

    Sommerset, I., and Nerland, A. H. Complete sequence of RNA1 and subgenomic RNA3 of Atlantic halibut nodavirus (AHNV). Diseases of Aquatic Organisms 58, 117-125, 2004.

    Sorger, P. K. Heat shock factor and the heat shock response. Cell 65, 363-366, 1991.

    Sung, Y. Y., MacRae, T. H., Sorgeloos, P., and Bossier, P. Stress response for disease control in aquaculture. Reviews in Aquaculture 3, 120-137, 2011.

    Takeshige, K., Baba, M., Tsuboi, S., Noda, T., and Ohsumi, Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. The Journal of Cell Biology 119, 301-311, 1992.

    Tanaka, S., Mori, K., Arimoto, M., Iwamoto, T., and Nakai, T. Protective immunity of sevenband grouper, Epinephelus septemfasciatus Thunberg, against experimental viral nervous necrosis. Journal of Fish Diseases 24, 15-22, 2001.

    Toffan, A., Panzarin, V., Toson, M., Cecchettin, K., and Pascoli, F. Water temperature affects pathogenicity of different betanodavirus genotypes in experimentally challenged Dicentrarchus labrax. Diseases of Aquatic Organisms 119, 231-238, 2016.

    Vendramin, N., Patarnello, P., Toffan, A., Panzarin, V., Cappellozza, E., Tedesco, P., Terlizzi, A., Terregino, C., and Cattoli, G. Viral encephalopathy and retinopathy in groupers (Epinephelus spp.) in southern Italy: a threat for wild endangered species? Biomed Central Veterinary Research 9, 1-7, 2013.

    Wang, T. Y., Chen, Y. M., and Chen, T. Y. Molecular cloning of orange-spotted grouper (Epinephelus coioides) heat shock transcription factor 1 isoforms and characterization of their expressions in response to nodavirus. Fish and Shellfish Immunology 59, 123-136, 2016.

    Wang, T. Y. Characterization of heat shock transcription fator 1 isoforms and modulation on immune response in orange-spotted grouper (Epinephelus coioides). Doctoral thesis. Retrieved from National Cheng Kung University of Institute of Biothechnology. 2017.

    Wendelaar Bonga, S. E. The stress response in fish. Physiological Reviews 77, 591-625, 1997.

    Wesselborg, S., and Stork, B. Autophagy signal transduction by ATG proteins: from hierarchies to networks. Cellular and Molecular Life Sciences 72, 4721-4757, 2015.

    Whitley, D., Goldberg, S. P., and Jordan, W. D. Heat shock proteins: a review of the molecular chaperones. Journal of Vascular Surgery 29, 748-751, 1999.

    Wu, C. Heat shock transcription factors: structure and regulation. Annual Review of Cell and Developmental Biology 11, 441-469, 1995.

    Xu, C., Liu, J., Hsu, L. C., Luo, Y., Xiang, R., and Chuang, T. H. Functional interaction of heat shock protein 90 and Beclin 1 modulates Toll‐like receptor‐mediated autophagy. The Federation of American Societies for Experimental Biology Journal 25, 2700-2710, 2011.

    Yim, W. W., and Mizushima, N. Lysosome biology in autophagy. Cell Discovery 6, 1-12, 2020.

    Yokoyama, W. M., Thompson, M. L., and Ehrhardt, R. O. Cryopreservation and thawing of cells. Current Protocols in Immunology 99, A.3G.1-A.3G.5, 2012.

    Zhang, M., Jiang, M., Bi, Y., Zhu, H., Zhou, Z., and Sha, J. Autophagy and apoptosis act as partners to induce germ cell death after heat stress in mice. PloS One 7, e41412, 2012.

    Zhao, J. Z., Xu, L. M., Liu, M., Zhang, Z. Y., Yin, J. S., Liu, H. B., and Lu, T. Y. Autophagy induced by infectious hematopoietic necrosis virus inhibits intracellular viral replication and extracellular viral yields in epithelioma papulosum cyprini cell line. Developmental and Comparative Immunology 77, 88-94, 2017.

    Zhou, J., Ding, T., Pan, W., Zhu, L. Y., Li, L., and Zheng, L. Increased intratumoral regulatory T cells are related to intratumoral macrophages and poor prognosis in hepatocellular carcinoma patients. International Journal of Cancer 125, 1640-1648, 2009.


    下載圖示 校內:2024-05-01公開
    校外:2024-05-01公開
    QR CODE