簡易檢索 / 詳目顯示

研究生: 蔡秉宏
Tsai, Ping-Hung
論文名稱: 複合相變材料之製備與導熱材料添加之影響探討
Preparation of composite phase change materials and the effects of adding thermal conductivity materials
指導教授: 陳盈良
Chen, Ying-Liang
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 143
中文關鍵詞: 潛熱儲能吸附法多孔隙載體相變材料複合相變材料
外文關鍵詞: latent heat storage, adsorption, phase change materials, composite phase change materials, kish graphite
相關次數: 點閱:168下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因人類社會中的能源使用量不斷增加。為了滿足能源不斷增長的需求,導致溫室氣體排放量增加,加劇了全球暖化與全球的極端氣候。也因近年來早晚溫差逐漸的增大,人類對於空調以調節室內溫度的需求提高。為了減少能源的消耗,出現了對於建築物儲存能量之需求,進而出現了熱儲能(Thermal Energy Storage,TES)一詞,其中潛熱儲能(Latent Heat Storage,LHS)為目前於建築物儲能上應用較為廣泛之熱儲能種類。
    潛熱儲能以相變材料(phase change materials,PCM)作為熱能儲存之介質,並且本研究擬以吸附法將PCM吸附進多孔隙載體中,使用石蠟(paraffin,PA)與癸酸(capric acid,CA)作為相變材料,高壓蒸氣養護混凝土(autoclaved aerated concrete,AAC)與膨脹蛭石(expanded vermiculite,EVM)作為多孔隙載體使用,藉由分析其物化性質了解其特性,以了解後續製備複合相變材料(composite phase change materials,C-PCM)上其吸附量差異之原因。
    經探討不同製備參數所得四種C-PCM皆於-90kPa之吸附壓力下有較大之吸附量表現,AAC吸附PA(AAC-PA)於吸附溫度80℃,吸附時間5 min時,三種粒徑之吸附量皆達飽和;AAC吸附CA(AAC-CA)於吸附溫度60℃,吸附時間5 min時,三種粒徑之吸附量皆達飽和;EVM吸附PA(EVM-PA)於吸附溫度80℃,吸附時間15 min時,三種粒徑之吸附量皆達飽和;EVM吸附CA(EVM-CA)於吸附溫度70℃,吸附時間15 min時,三種粒徑之吸附量皆達飽和。接著使用洩漏試驗量測C-PCM洩漏率,並以吸附量與洩漏試驗歸納出較合適之C-PCM參數。
    量測4.750-9.500 mm粒徑之AAC-CA(AAC-L-CA)熱性質時,發現到其熱流曲線近乎呈現直線,經查相關文獻後得知AAC中之鹼性物質可能與CA產生化學反應,使CA反應成癸酸鈣,從而使CA之潛熱消失。接著再以氫氧化鈣與CA進行混合,並發現於保存時間一天之條件下,其潛熱即完全消失,意味著CA確實會與鹼性物質產生化學反應,且反應速率隨著鹼性之增加而增快。接著使用天然石墨與凝析石墨作為提升C-PCM導熱性之原料,以改善C-PCM之過冷問題,並於DSC熱流分析可得出此兩種材料皆有改善C-PCM導熱性之能力,使其過冷之現象有改善。
    綜合以上結果,將多孔隙載體與PCM以吸附法可減少室內溫度之波動變化,藉以達到降低建築物內空調之使用需求,達到節能減碳之目的。

    Due to climate variability and changes in lifestyle, there has been an increased demand for air conditioning to regulate indoor temperatures. In order to reduce energy consumption, the need for energy storage in buildings has arisen, giving rise to the concept of thermal energy storage (TES). Among the various TES methods, Latent heat storage (LHS) is a widely applied form of thermal energy storage in buildings. LHS utilizes phase change materials (PCM) as the medium for storing thermal energy. This study employs the adsorption method to physically combine phase change materials with porous carriers to prepare composite phase change materials (C-PCM). Paraffin was selected as the PCM, while autoclaved aerated concrete (AAC) and expanded vermiculite (EVM) were chosen as the porous carriers. By comprehensively considering the effects of C-PCM preparation parameters (pressure, time, temperature, and particle size of porous carriers) on the adsorption capacity and the results of leakage tests, the subsequent parameters for investigating the thermal properties of C-PCM were evaluated. Finally, a comparison between C-PCM with the addition of 5% exfoliated graphite and untreated C-PCM was conducted using thermal analysis. The results indicated an improvement in the supercooling phenomenon and an increase in the phase transition speed of C-PCM with the addition of 5% kish graphite (KG), confirming that the addition of carbon materials can enhance its thermal conductivity.

    摘要 I SUMMARY III 誌謝 IX 目錄 XI 表目錄 XIV 圖目錄 XV 第一章 前言 1 1-1 研究動機與目的 1 1-2 研究內容 2 第二章 文獻回顧 4 2-1 熱儲能之發展與應用 4 2-1-1 熱儲能之發展 4 2-1-2 熱儲能之應用 10 2-2 相變材料之種類與特性 13 2-2-1 相變材料之種類 13 2-2-2 相變材料之特性 15 2-3 複合相變材料製備方式與潛在問題 16 2-3-1 複合相變材料之製備方式 17 2-3-2 多孔隙載體之種類 20 2-3-3 複合相變材料之潛在問題 28 2-4 小結 29 第三章 研究材料、設備及方法 31 3-1 研究架構與實驗流程 31 3-2 研究材料與設備 34 3-2-1 樣品前處理 34 3-2-2 實驗試藥與儀器設備 34 3-3 研究分析與方法 36 3-3-1 複合相變材料之實驗參數設計與實驗流程 36 3-3-2 洩漏試驗 37 3-3-3 分析方法 39 第四章 結果與討論 45 4-1 多孔隙載體與相變材料之基本特性分析 45 4-1-1 多孔隙載體之基本特性分析 45 4-1-2 多孔隙載體之孔洞性質分析 50 4-1-3 小結 77 4-2 複合相變材料之製備與微觀結構探討 78 4-2-1 吸附條件對複合相變材料製備之影響 78 4-2-2 複合相變材料之洩漏試驗與微觀結構 92 4-2-3 小結 100 4-3 複合相變材料之熱性質與導熱性改善 102 4-3-1 複合相變材料之熱性質 102 4-3-2 複合相變材料之導熱性質改善 111 4-3-3 小結 120 第五章 結論與建議 122 5-1 結論 122 5-2 建議 124 參考文獻 126 附錄 133

    1. Tran, N. P.; Nguyen, T. N.; Ngo, T. D.; Le, P. K.; Le, T. A. Strategic progress in foam stabilisation towards high-performance foam concrete for building sustainability: A state-of-the-art review. Journal of Cleaner Production 2022, 133939.
    2. Cao, X.; Dai, X.; Liu, J. Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade. Energy and Buildings 2016, 128, 198-213.
    3. Podara, C. V.; Kartsonakis, I. A.; Charitidis, C. A. Towards phase change materials for thermal energy storage: classification, improvements and applications in the building sector. applied sciences 2021, 11 (4), 1490.
    4. Mousavi, S.; Rismanchi, B.; Brey, S.; Aye, L. PCM embedded radiant chilled ceiling: A state-of-the-art review. Renewable and Sustainable Energy Reviews 2021, 151, 111601.
    5. Sharshir, S. W.; Joseph, A.; Elsharkawy, M.; Hamada, M. A.; Kandeal, A. W.; Elkadeem, M. R.; Kumar Thakur, A.; Ma, Y.; Eid Moustapha, M.; Rashad, M.; et al. Thermal energy storage using phase change materials in building applications: A review of the recent development. Energy and Buildings 2023, 285, 112908.
    6. Morrison, D.; Abdel-Khalik, S. Effects of phase-change energy storage on the performance of air-based and liquid-based solar heating systems. Solar Energy 1978, 20 (1), 57-67.
    7. Rathore, P. K. S.; Shukla, S. K. Potential of macroencapsulated PCM for thermal energy storage in buildings: A comprehensive review. Construction and Building Materials 2019, 225, 723-744.
    8. Khan, Z.; Khan, Z.; Ghafoor, A. A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility. Energy conversion and management 2016, 115, 132-158.
    9. Magendran, S. S.; Khan, F. S. A.; Mubarak, N. M.; Vaka, M.; Walvekar, R.; Khalid, M.; Abdullah, E. C.; Nizamuddin, S.; Karri, R. R. Synthesis of organic phase change materials (PCM) for energy storage applications: A review. Nano-Structures & Nano-Objects 2019, 20, 100399.
    10. Yan, T.; Wang, R.; Li, T.; Wang, L.; Fred, I. T. A review of promising candidate reactions for chemical heat storage. Renewable and Sustainable Energy Reviews 2015, 43, 13-31.
    11. Al-Yasiri, Q. M.; Szabó, M. Performance assessment of phase change materials integrated with building envelope for heating application in cold locations. European Journal of Energy Research 2021, 1 (1), 7-14.
    12. Meng, E.; Wang, J.; Yu, H.; Cai, R.; Chen, Y.; Zhou, B. Experimental study of the thermal protection performance of the high reflectivity-phase change material (PCM) roof in summer. Building and Environment 2019, 164, 106381.
    13. Voelker, C.; Kornadt, O.; Ostry, M. Temperature reduction due to the application of phase change materials. Energy and Buildings 2008, 40 (5), 937-944..
    14. Lu, S.; Xu, B.; Tang, X. Experimental study on double pipe PCM floor heating system under different operation strategies. Renewable Energy 2020, 145, 1280-1291.
    15. Ali, S.; Deshmukh, S. P. An overview: Applications of thermal energy storage using phase change materials. Materials Today: Proceedings 2020, 26, 1231-1237.
    16. Raj, C. R.; Suresh, S.; Bhavsar, R.; Singh, V. K. Recent developments in thermo-physical property enhancement and applications of solid solid phase change materials: A review. Journal of Thermal Analysis and Calorimetry 2020, 139, 3023-3049.
    17. Jaguemont, J.; Omar, N.; Van den Bossche, P.; Mierlo, J. Phase-change materials (PCM) for automotive applications: A review. Applied thermal engineering 2018, 132, 308-320.
    18. Wang, X.; Li, W.; Luo, Z.; Wang, K.; Shah, S. P. A critical review on phase change materials (PCM) for sustainable and energy efficient building: Design, characteristic, performance and application. Energy and Buildings 2022, 260, 111923.
    19. Karaipekli, A.; Sarı, A. Preparation, thermal properties and thermal reliability of eutectic mixtures of fatty acids/expanded vermiculite as novel form-stable composites for energy storage. Journal of Industrial and Engineering Chemistry 2010, 16 (5), 767-773.
    20. Zhang, W.; Zhang, X.; Huang, Z.; Yin, Z.; Wen, R.; Huang, Y.; Wu, X.; Min, X. Preparation and characterization of capric-palmitic-stearic acid ternary eutectic mixture/expanded vermiculite composites as form-stabilized thermal energy storage materials. Journal of materials science & technology 2018, 34 (2), 379-386.
    21. Khyad, A.; Samrani, H.; Bargach, M. State of the art review of thermal energy storage systems using PCM operating with small temperature differences: Focus on Paraffin. J. Mater. Environ. Sci 2016, 7 (4), 1184-1192.
    22. Kumar, N.; Gupta, S. K.; Sharma, V. K. Application of phase change material for thermal energy storage: An overview of recent advances. Materials Today: Proceedings 2021, 44, 368-375.
    23. Bruno, F.; Belusko, M.; Liu, M.; Tay, N. Using solid-liquid phase change materials (PCMs) in thermal energy storage systems. In Advances in thermal energy storage systems, Elsevier, 2015; pp 201-246. 24. Soares, N.; Costa, J. J.; Gaspar, A. R.; Santos, P. Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency. Energy and buildings 2013, 59, 82-103.
    25. Memon, S. A. Phase change materials integrated in building walls: A state of the art review. Renewable and sustainable energy reviews 2014, 31, 870-906.
    26. Salunkhe, P. B.; Shembekar, P. S. A review on effect of phase change material encapsulation on the thermal performance of a system. Renewable and Sustainable Energy Reviews 2012, 16 (8), 5603-5616.
    27. Milián, Y. E.; Gutiérrez, A.; Grágeda, M.; Ushak, S. A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties. Renewable and Sustainable Energy Reviews 2017, 73, 983-999.
    28. Nomura, T.; Okinaka, N.; Akiyama, T. Impregnation of porous material with phase change material for thermal energy storage. Materials Chemistry and Physics 2009, 115 (2-3), 846-850.
    29. Raj, A.; Sathyan, D.; Mini, K. Physical and functional characteristics of foam concrete: A review. Construction and Building Materials 2019, 221, 787-799.
    30. Hamad, A. J. Materials, production, properties and application of aerated lightweight concrete. International journal of materials science and engineering 2014, 2 (2), 152-157.
    31. Brady, K.; Watts, G.; Jones, M. R. Specification for foamed concrete; TRL Limited Crowthorne, UK, 2001.
    32. Shah, S. N.; Mo, K. H.; Yap, S. P.; Yang, J.; Ling, T.-C. Lightweight foamed concrete as a promising avenue for incorporating waste materials: A review. Resources, Conservation and Recycling 2021, 164, 105103.
    33. Zhao, X.; Lim, S.-K.; Tan, C.-S.; Li, B.; Ling, T.-C.; Huang, R.; Wang, Q. Properties of foamed mortar prepared with granulated blast-furnace slag. Materials 2015, 8 (2), 462-473.
    34.王俊瑋,碳化矽污泥再利用於氣泡混凝土及其吸水特性之探討,國立成功大學,台南市,2022..
    35. Steins, J. J.; Volk, R.; Schultmann, F. Post-demolition autoclaved aerated concrete: recycling options and volume prediction in Europe. In Ecocity World Summit 2021-Conference Proceedings, 2022; p 259.
    36. Volk, R.; Steins, J. J.; Kreft, O.; Schultmann, F. Life cycle assessment of post-demolition autoclaved aerated concrete (AAC) recycling options. Resources, Conservation and Recycling 2023, 188, 106716.
    37. Gyurkó, Z.; Jankus, B.; Fenyvesi, O.; Nemes, R. Sustainable applications for utilization the construction waste of aerated concrete. Journal of cleaner production 2019, 230, 430-444. 38. Thai, H. N.; Kawamoto, K.; Nguyen, H. G.; Sakaki, T.; Komatsu, T.; Moldrup, P. Measurements and modeling of thermal conductivity of recycled aggregates from concrete, clay brick, and their mixtures with autoclaved aerated concrete grains. Sustainability 2022, 14 (4), 2417.
    39. Zou, D.; Que, Z.; Cui, W.; Wang, X.; Guo, Y.; Zhang, S. Feasibility of recycling autoclaved aerated concrete waste for partial sand replacement in mortar. Journal of Building Engineering 2022, 52, 104481.
    40. Tie-lin, F.; Mi-Mi, C.; Feng-qing, Z. The preparation of phase change energy storage ceramsite from waste autoclaved aerated concrete. Procedia environmental sciences 2016, 31, 227-231.
    41. Wadee, A.; Walker, P.; McCullen, N.; Ferrandiz-Mas, V. Lightweight aggregates as carriers for phase change materials. Construction and Building Materials 2022, 360, 129390.
    42. Valášková, M.; Martynkova, G. S. Vermiculite: structural properties and examples of the use. Clay minerals in nature-their characterization, modification and application, InTech 2012, 209-238.
    43. Marcos, C.; Rodríguez, I. Expansion behaviour of commercial vermiculites at 1000 C. Applied Clay Science 2010, 48 (3), 492-498.
    44. Marcos, C.; Rodríguez, I. Expansibility of vermiculites irradiated with microwaves. Applied Clay Science 2011, 51 (1-2), 33-37.
    45. Miao, Z.; Peng, T. J.; Xi, Y. G.; Yang, W. Preparation of expanding vermiculite by chemical and microwave methods. In Advanced Materials Research, 2010; Trans Tech Publ: Vol. 96, pp 155-160.
    46. Li, M.; Zhao, Y.; Ai, Z.; Bai, H.; Zhang, T.; Song, S. Preparation and application of expanded and exfoliated vermiculite: A critical review. Chemical Physics 2021, 550, 111313.
    47. Folorunso, O. Microwave processing of vermiculite. University of Nottingham, 2015.
    48. Mazela, B.; Batista, A.; Grześkowiak, W. Expandable graphite as a fire retardant for cellulosic materials—A review. Forests 2020, 11 (7), 755.
    49. Park, S.-J.; Jin, F.-L.; Lee, S.-Y.; Kim, K.-S. A novel drying process for oil adsorption of expanded graphite. Carbon letters 2013, 14 (3), 193-195.
    50. Ramakrishnan, S.; Wang, X.; Sanjayan, J.; Wilson, J. Assessing the feasibility of integrating form-stable phase change material composites with cementitious composites and prevention of PCM leakage. Materials Letters 2017, 192, 88-91.
    51. Li, X.; Chen, H.; Liu, L.; Lu, Z.; Sanjayan, J. G.; Duan, W. H. Development of granular expanded perlite/paraffin phase change material composites and prevention of leakage. Solar Energy 2016, 137, 179-188.
    52. Wen, R.; Huang, Z.; Huang, Y.; Zhang, X.; Min, X.; Fang, M.; Liu, Y. g.; Wu, X. Synthesis and characterization of lauric acid/expanded vermiculite as form-stabilized thermal energy storage materials. Energy and Buildings 2016, 116, 677-683.
    53. Song, S.; Li, J.; Yang, Z.; Wang, C. Enhancement of thermo-physical properties of expanded vermiculite-based organic composite phase change materials for improving the thermal energy storage efficiency. ACS omega 2021, 6 (5), 3891-3899.
    54. 黃富昌;陳慶和,以等溫吸/脫附動力曲線探討土壤對有機污染物吸附特性之研究. In 2005 台灣環境資源永續發展研討會,2005.
    55. Fang, G.; Yu, M.; Meng, K.; Shang, F.; Tan, X. High-performance phase-change materials based on paraffin and expanded graphite for solar thermal energy storage. Energy & Fuels 2020, 34 (8), 10109-10119.
    56. JianShe, H.; Chao, Y.; Xu, Z.; Jiao, Z.; JinXing, D. Structure and thermal properties of expanded graphite/paraffin composite phase change material. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2019, 41 (1), 86-93.
    57. Yang, X.; Yuan, Y.; Zhang, N.; Cao, X.; Liu, C. Preparation and properties of myristic–palmitic–stearic acid/expanded graphite composites as phase change materials for energy storage. Solar Energy 2014, 99, 259-266.
    58. Kumar, D.; Alam, M.; Sanjayan, J. An energy-efficient form-stable phase change materials synthesis method to enhance thermal storage and prevent acidification of cementitious composite. Construction and Building Materials 2022, 348, 128697.
    59.劉懿靚,膨脹石墨製備及應用於原油吸附之研究,國立成功大學,台南市,2022.
    60. Rathore, P. K. S.; kumar Shukla, S. Improvement in thermal properties of PCM/Expanded vermiculite/expanded graphite shape stabilized composite PCM for building energy applications. Renewable Energy 2021, 176, 295-304.

    無法下載圖示 校內:不公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE