簡易檢索 / 詳目顯示

研究生: 林建宏
Lin, Jian-Hung
論文名稱: 研究Y3Co的相變特性
Investigation of the characteristics of the phase transition in Y3Co
指導教授: 呂欽山
Lue, Chin-Shan
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 56
中文關鍵詞: 核磁共振相變特性
外文關鍵詞: NMR, phase transition
相關次數: 點閱:93下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據先前文獻研究指出Y3Co合金材料在溫度約160K附近其電阻率有不尋常的變化,可能存在電荷密度波的相變。為了解這材料相變特性,本研究測量Y3Co材料電阻率、比熱、熱導率、熱電功率、霍爾係數、磁化率以及核磁共振並針對相變溫度附近做進一步的討論。根據量測霍爾係數隨溫度變化的結果,研究發現電子載子在低溫時有減少的趨勢,從這個結果顯示出經過相變後電子費米面上有明顯的變化。另外,根據核磁共振的頻譜量測結果指出,在溫度低於相變溫度時,核磁共振的頻譜中央譜線沒有明顯變寬,顯示經過相變不是由磁性造成。

    Previous studies have indicated that Y3Co undergoes a possible charge density wave (CDW) phase transition at T* ~ 160 K. In order to assess the phase transition nature in this compound, we have carried out the electrical resistivity, specific heat, thermal conductivity, Hall coefficient, Seebeck coefficient, magnetic susceptibility, and 59Co nuclear magnetic resonance (NMR) measurements, mainly focusing on the signatures around the phase transition temperature. The phase transition has been characterized by marked features near T* in all measured physical quantities. From a gradually increase in the magnitude of the Hall coefficient below T*, we conclude the reduction of negative charge carriers at low temperatures. Such a result indicates the significant modification in the electronic Fermi surfaces across the phase transition. In addition, the NMR spectra exhibit no visible line broadening below T*, excluding the magnetic origin for the observed phase transition.

    摘要 II Abstract III 致謝 VI 目錄 VIII 圖目錄 IX 表目錄 XI 第一章 前言 1 第二章 核磁共振基本原理 3 2-1 黎曼效應(Zeeman effect) 3 2-2 線形(Line shape) 4 2-3 奈特位移(Knight shift) 6 2-4 電四重極效應(Electric quadrupole effect) 9 2-5 運動方程式 13 2-6 自旋晶格鬆弛時間(spin lattice relaxation time) 16 第三章 樣品配置與量測 20 3-1 樣品製備 20 3-2 X-ray 量測 21 3-3 電阻率量測 22 3-4 熱電功率量測 23 第四章 實驗方法 24 4-1 實驗儀器 24 4-2 核磁共振量測方法 27 第五章 實驗結果與討論 29 5-1 電導率與比熱測結果與分析 29 5-2 熱電功率和熱導率量測結果與分析 32 5-3 霍爾係數量測結果與分析 36 5-4 線形與四重極效應 39 5-5 奈特位移與磁化率 42 5-6 自旋晶格鬆弛時間與費米能階態密度 46 第六章 結論 48 參考文獻 49

    [1]Francis J. Di Salvo Jr, and T. Maurice Rice, "Charge‐density waves in transition‐metal compounds", Physics Today 32, 32 (1979).
    [2]John Singleton, "Band Theory and Electronic Properties of Solids" (Oxford University Press, 2001).
    [3]A. M. Gabovich, A. I. Voitenko, and M. Ausloos, "Charge- and spin-density waves in existing superconductors:
    competition between Cooper pairingand Peierls or excitonic instabilities", Physics Reports 367, 583 (2002).
    [4]Leigh Sneddon, M. C. Cross, and Daniel S. Fisher, "Sliding Conductivity of Charge-Density Waves", Physical Review Letters 49, 292 (1982).
    [5]E. Talik, J. Szade, J. Heimann, A. Winiarska, A. Winiarski, and A. Chełkowski, "X-ray examination, electrical and magnetic properties of R3Co single crystals (R ≡ Y, Gd, Dy and Ho)", Journal of the Less Common Metals 138, 129 (1988).
    [6]A. Podlesnyak, G. Ehlers, H. Cao, M. Matsuda, M. Frontzek, O. Zaharko, V. A. Kazantsev, A. F. Gubkin, and N. V. Baranov, "Temperature-driven phase transformation in Y3Co: Neutron scattering and first-principles studies", Physical Review B 88, 024117 (2013).
    [7]S.V. Zaitsev-Zotov, "Transport properties of TaS3 and NbSe3 crystals of nanometer-scale transverse dimensions", Microelectronic Engineering 69, 549 (2003).
    [8]G. Grüner, "The dynamics of charge-density waves", Reviews of Modern Physics 60, 1129 (1988).
    [9]Jing-qin Shen, Zhu-an Xu, Xue-zhi Chen, and Hong-tao Wang, "Effect of magnetic field on the thermoelectric power in the quasi-one-dimensional metal NbSe3", Physics Letters A 327, 221 (2004).
    [10]M. F. Hundley, and A. Zettl, "Magnetothermopower of NbSe3", Solid State Communications 61, 587 (1987).
    [11]D. V. Evtushinsky, A. A. Kordyuk, V. B. Zabolotnyy, D. S. Inosov, B. Büchner, H. Berger, L. Patthey, R. Follath, and S. V. Borisenko, "Pseudogap-Driven Sign Reversal of the Hall Effect", Physical Review Letters 100, 236402 (2008).
    [12]S. V. Borisenko, A. A. Kordyuk, A. N. Yaresko, V. B. Zabolotnyy, D. S. Inosov, R. Schuster, B. Büchner, R. Weber, R. Follath, L. Patthey, and H. Berger, "Pseudogap and Charge Density Waves in Two Dimensions", Physical Review Letters 100, 196402 (2008).
    [13]N. Bloembergen and T. J. Rowland, Acta Metallurgica 1, 731 (1953).
    [14]W. D. Knight, "Nuclear Magnetic Resonance Shift in Metals", Physical Review 76, 1259 (1949).
    [15]H. F. Liu, C. N. Kuo, C. S. Lue, K.-Z. Syu, and Y. K. Kuo, "Partially gapped Fermi surfaces in La3Co4Sn13 revealed by nuclear magnetic resonance", Physical Review B 88, 115113 (2013).
    [16]S. Gnanarajan and R. F. Frindt, "Hysteresis in the thermopower of 2H-TaSe2 in the charge-density-wave state", Physical Review B 33, 1443 (1986).
    [17]N. F. Mott and H. Jones, "The Theory of the Properties of Metals and Alloys" ( Clarendon Press, Oxford, England, 1936).
    [18]C. Hess, C. Schlenker, J. Dumas, M. Greenblatt, and Z. S. Teweldemedhin, "Magnetotransport and thermopower properties of the quasi-two-dimensional charge-density-wave compounds (PO2)4 (WO3)2m (m=4,6) ", Physical Review B 54, 4581 (1996).
    [19]Enric Canadell and Myung-Hwan Whangbo, "Charge-density-wave instabilities expected in monophosphate tungsten bronzes", Physical Review B 43, 1894 (1991).
    [20]C. Hess, C. Schlenker, J. Dumas, M. Greenblatt, E. Canadell, and M.H. Whangbo , "Anisotropic thermopower in the charge density wave quasi two-dimensional compounds (PO2)4(WO3)2m(m=4, 6) ", Synthetic Metals 86, 2189 (1997).
    [21]Y. K. Kuo, K. M. Sivakumar, T. H. Su, and C. S. Lue, "Phase transitions in Lu2Ir3Si5: An experimental investigation by transport measurements", Physical Review B 74, 045115 (2006).
    [22]Yogesh Singh, Dilip Pal, S. Ramakrishnan, A. M. Awasthi, and S. K. Malik, "Phase transitions in Lu2Ir3Si5", Physical Review B 71, 045109 (2005).
    [23]C. S. Lue, S. H. Yang, A. C. Abhyankar, Y. D. Hsu, H. T. Hong, and Y. K. Kuo, "Transport, thermal, and NMR characteristics of CeRu2Al10", Physical Review B 82, 045111 (2010).
    [24]Y. K. Kuo, F. H. Hsu, H. H. Li, H. L. Huang, C. W. Huang, C. S. Lue, and H. D. Yang, "Ionic size and atomic disorder effects on the charge-density-wave transitions in R5Ir4Si10(R=Dy−Lu)", Physical Review B 67, 195101 (2003).
    [25]B. Becker, N. G. Patil, S. Ramakrishnan, A. A. Menovsky, G. J. Nieuwenhuys, J. A. Mydosh, M. Kohgi, and K. Iwasa, "Strongly coupled charge-density wave transition in single-crystal Lu5Ir4Si10", Physical Review B 59, 7266 (1999).
    [26]P.M. Chaikin, W.W. Fuller, R. Lacoe, J.F. Kwak, R.L. Greene, J.C. Eckert, and N.P. Ong, "Thermopower of doped and damaged NbSe3", Solid State Communications 39, 553 (1981).
    [27]N.P. Ong, and P. Monceau, "Hall effect of a linear-chain metal: NbSe3", Solid State Communications 26, 487 (1978).
    [28]Charles Kittel, "Introduction to Solid State Physics 7th" (John Wiley and Sons, Inc. 1996).
    [29]Romain Bel, Kamran Behnia, and Helmuth Berger, "Ambipolar Nernst Effect in NbSe2", Physical Review Letters 91, 066602 (2003).
    [30]C. A. McElroy, J. J. Hamlin, B. D. White, M. A. McGuire, B. C. Sales, and M. B. Maple, "Magnetotransport properties of single-crystalline LaFeAsO", Physical Review B 88, 134513 (2013).
    [31]Michael A. McGuire, Andrew D. Christianson, Athena S. Sefat, Brian C. Sales, Mark D. Lumsden, Rongying Jin, E. Andrew Payzant, David Mandrus, Yanbing Luan, Veerle Keppens, Vijayalaksmi Varadarajan, Joseph W. Brill, Raphaël P. Hermann, Moulay T. Sougrati, Fernande Grandjean, and Gary J. Long, "Phase transitions in LaFeAsO: Structural, magnetic, elastic, and transport properties, heat capacity and Mössbauer spectra", Physical Review B 78, 094517 (2008).
    [32]R. H. Liu, D. Tan, Y. A. Song, Q. J. Li, Y. J. Yan, J. J. Ying, Y. L. Xie, X. F. Wang, and X. H. Chen, "Physical properties of the layered pnictide oxides Na2Ti2P2O (P=As,Sb) ", Physical Review B 80, 144516 (2009).
    [33]W. E. Pickett, "Electronic instability in inverse-K2NiF4-structure Na2Sb2Ti2O", Physical Review B 58, 4335 (1998).
    [34]G. C. Carter, L. H. Bennett and D. J. Kahan, "Metallic Shifts in NMR" (Pergamon Press, 1977).
    [35]W. D. Knight, "Nuclear Magnetic Resonance Shift in Metals", Physical Review 76, 1259 (1949).
    [36]R. E. Watson and L. H. Bennett, "Calculation of atomic hyperfine-field coupling constants", Physical Review B 15, 502 (1977).
    [37]K. Yoshimura, M. Mekata, M. Takigawa, Y. Takahashi, and H. Yasuoka, "Spin fluctuations in Y(Co1-xAlx)2: A transition system from nearly to weakly itinerant ferromagnetism", Physical Review B 37, 3593 (1988).
    [38]C. S. Lue, C. F. Chen, Fu-Kuo Chiang, and M.-W. Chu, "Annealing effect on the reduction of Fermi-level density of states in CoTiSb: NMR evidence", Physical Review B 80, 174202 (2009).
    [39]Y. Yafet and V. Jaccarino, "Nuclear Spin Relaxation in Transition Metals; Core Polarization", Physical Review 133, A1630 (1964).
    [40]Bogdan Nowak, "Nuclear Spin–Lattice Relaxation in Transition Metal Alloys and Intermetallics", Solid State Nuclear Magnetic Resonance 21, 53 (2002).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE