| 研究生: |
鄭凱鴻 Cheng, Kai-Hung |
|---|---|
| 論文名稱: |
利用原子力學顯微鏡在奈米粒子團和肺泡細胞之間吸附力量的量測 Adhesion Force between Nanoparticle Clusters and a Lung Cell Measured by Atomic Force Microscope |
| 指導教授: |
廖峻德
Liao, Jiunn-Der |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 吸附力 、銀奈米粒子 、金奈米粒子 、肺泡細胞 |
| 外文關鍵詞: | Adhesion force, Silver nanoparticle, Gold nanoparticle, Lung cell |
| 相關次數: | 點閱:93 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著奈米科技的蓬勃發展,奈米粒子被廣泛的使用在人們周遭的生活中,雖然奈米粒子的應用帶來了生活上的便利,但也帶來了傷害身體健康之潛在危險性。由過去的研究指出當人體暴露在富含奈米粒子的環境當中,奈米粒子可藉由人體呼吸過程的途徑,進入到肺泡組織內,形成奈米粒子團且吸附在肺泡細胞上,並造成肺部系統的損傷,對肺泡細胞的生理功能產生影響,例如:細胞增生、分化功能的減弱以及造成細胞凋零的現象等。儘管奈米粒子對細胞毒性已廣泛地被研究,但是造成奈米粒子聚集在肺泡細胞之作用力仍未被完全理解。
本研究以原子力學顯微鏡 (AFM) 作為吸附力量測工具,並選定目前周遭生活中常用的銀和金奈米粒子作為研究之對象,並將未加入分散劑之奈米粒子所形成之粒子團利用矽烷偶聯劑 (3-mercaptopropyltrimethoxy silane) 接枝於原子力學顯微鏡探針針尖上,進一步針對活體肺泡細胞 (human fetal lung cell) 的表面來進行奈米粒子團和細胞之間吸附力量之量測及評估。評估部分包含改變量測位置、由不同尺寸銀、金奈米粒子所形成的奈米粒子團對於吸附力量的影響。結果顯示,無論使用何種探針 (bare tip、MPTMS_tip、Ag_tip、Au_tip) 在量測區域內於肺泡細胞表面之吸附力量測結果,其吸附力量的分佈情況皆並不會因為量測位置的改變而使得量測的結果有顯著差異。當銀、金奈米粒子尺寸增加時,該奈米粒子所形成的奈米粒子團和細胞膜表面所形成的單一接觸面積 (single effective contact area) 隨之增加,進而造成粒子和細胞表面之間的吸附力量變大。此外,在相同的粒子尺寸下,由於銀、金奈米粒子團表面特性以及銀、金奈米粒子本身團聚特性的不同,使得粒子間團聚力量、粒子間距以及團聚的粒子數量之差異,影響整體團聚的形狀,進而造成金奈米粒子團與肺泡細胞表面之間的吸附力增加。
With the growing popularity of nanotechnology, nanoparticles (NPs) generate great benefits as well as new potential risks in our daily life. According to the past investigation, NPs may be inhaled into lung, then aggregate and adsorb on the lung cells and result in lung damage and other toxicity, such as cell functions, proliferation decline, and so on. Despite lots of researches focus on the cytopathogenic effect of inhaled particles, the nature of the interactions between nanoparticles and lung cells remains largely unknown.
In this study gold and silver NPs were chosen because they are two of most common commercial NPs in our daily life. Atomic force microscopy (AFM) was as force apparatus to measure the interaction between the surface of human fetal lung cell (IMR-90) and NP clusters which are formed in normal environment. Through 3-mercaptopropyltrimethoxy silane (MPTMS), NP clusters were chemisorbed on the apex of AFM tip and then the adhesion forces between the tip and the cell were analyzed. With the increasing size of NP, adhesion force raised since the single effective contact area between NP clusters and the lung cell membrane surface would affect the adhesive condition between NP clusters and the surface. Besides, owing to the surface properties and the agglomeration of gold, gold NP clusters has better affinity to cell surface than silver NP clusters, which resulted in the adhesion force between gold NP clusters and the cell is thus larger than that between silver NP clusters and the cell. For all the adhesion force between lung cells and different tips (bare tip, MPTMS_tip, Ag_tip, Au_tip), there are no significant differences for the adhesion force of each sites on cell membrane.
1. “Nanoscience and nanotechnologies: Opportunities and uncertainties”, The Royal Society and The Royal Academy of Engineering, London, UK, 7, 2004.
2. R. W. Atkinson, H. R. Anderson, D. P. Strachan, J. M. Bland, S. A. Bremner, and A. de Leon, ” Short‐term associations between outdoor air pollution and visits to accident and emergency departments in London for respiratory complaints”, European Respiratory Journal, Vol. 13, 257, 1999.
3. F. Ballester, P. Rodriguez, C. Iniguez, M. Saez, A. Daponte, I. Galan, M. Taracido, F. Arribas, J. Bellido, F.B. Cirarda, A. Canada, J.J. Guillen, F. Guillen-Grima, E. Lopez, S. Perez-Hoyos, A. Lertxundi, and S. Toro, ”Air pollution and cardiovascular admissions association in Spain: results within the EMECAS project”, Journal of Epidemiology and Community Health, Vol. 60, 328, 2006.
4. M. Christian, R. R. Barbara, B. Fabian, V. Dimitri, O. Matthias, and G.Peter, ”Interactions of nanoparticles with pulmonary structures and cellular responses”, American Journal of Physiology-Lung Cellular and Molecular Physiology, Vol. 294, L817-L829, 2008.
5. A. Baun, N. B. Hartmann, K. Grieger, and K. O. Kusk, “Ecotoxicity of engineered nanoparticles to aquatic invertebrates: A brief review and recommendations for future toxicity testing”, Ecotoxicology, Vol. 17, 387–395, 2008.
6. A. Baun, S. N. Søensen, R. F. Rasmussen, N. B. Hartmann, and C. B. Koch, “Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60”, Aquatic Toxicology, Vol. 86, 379–387, 2008.
7. K. Laura, B. Stolle, L. Benjamin, S. Amanda, C. M. Richard, T. Lee, J. S. John, M. H. Saber, and M. C. Hofmann ,” Silver nanoparticles disrupt GDNF/Fyn kinase signaling in spermatogonial stem cells”, Toxicological Sciences, Vol. 116(2), 577–589, 2010.
8. M. H. Saber, K. J. Amanda, M. S. Amanda, M. D. Helen, F. A. Syed, and J. S. John, “The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion” , Toxicological Sciences, Vol. 92(2), 456–463, 2006.
9. O. Thoumine, P. Kocian, A. Kottelat, and J. J. Meister, “Short-term binding of fibroblast to fibronectin: Optical tweezers experiments and probabilistic analysis”, European Respiratory Journal, Vol. 29(6), 398-408, 2000.
10. E. Evans, K. Ritchie, and R. Merkel, “Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces”, Biophysical Journal, Vol. 68, 2580-2587, 1995.
11. C. T. Lim, E. H. Zhou, A. Li, S. R. K. Vedula, and H. X. Fu, “Experimental techniques for single cell and single molecule biomechanics”, Materials Science and Engineering C, Vol. 26, 1278-1288, 2006.
12. 董慕愷 陳郁文,「奈米金觸媒」,工程技術報導,369期,49,2005。
13. 嚴鴻仁 徐善慧,「奈米金與銀的妙用」,奈米科技與生物醫學報導,431期,31,2008。
14. Z. Leonenko, E. Finot, and M. Amreina, “Adhesive interaction measured between AFM probe and lung epithelial type II cells”, Ultramicroscopy, Vol. 104, 948-953, 2007.
15. W. Zhang, A. G. Stack, and Y. S. Chen, “Interaction force measurement between E. coli cells and nanoparticles immobilized surfaces by using AFM”, Colloids and Surfaces B: Biointerfaces, Vol. 82, 316–324, 2011
16. J. K. Vasir and V. Labhasetwar, “Quantification of the force of nanoparticle-cell membrane interactions and its influence on intracellular trafficking of nanoparticles”, Biomaterials, Vol. 29, 4244-4252, 2008
17. M. Paajanen, J. Katainen, O. H. Pakarinen, A. S. Foster, and J. Lahtinen, “Experimental humidity dependency of small particle adhesion on silica and titania”, Journal of Colloid and Interface Science, Vol. 304, 518–523, 2006.
18. M. Tanaka, M. Komagata, M. Tsukada, and H. Kamiya, ”Evaluation of the particle–particle interactions in a toner by colloid probe AFM”, Powder Technology, Vol. 183, 273–281, 2008.
19. R. Jonesa, H. M. Pollocka, D. Geldartb, and A. Verlinden, “Inter-particle forces in cohesive powders studied by AFM: Effects of relative humidity, particle size and wall adhesion”, Powder Technology, Vol. 132, 196– 210, 2003.
20. A. Fukunishi and Y. Mori, “Adhesion force between particles and substrate in a humid atmosphere studied by atomic force microscopy”, Advanced Powder Technol, Vol. 17, No. 5, 567–580, 2006.
21. C. K. Lee, Y. M. Wang, L. S. Huang, and S. M. Lin, “Atomic force microscopy: Determination of unbinding force off rate and energy barrier for protein–ligand interaction”, Micron, Vol. 38, 446-461, 2007.
22. M. B. Ali, F. Bessueille, J. M. Chovelon, A. Abdelghani, N. J. Renault, M. A. Maaref, and C. Martelet, “Use of ultra-thin organic silane films for the improvement of gold adhesion to the silicon dioxide wafers for (bio)sensor applications”, Materials Science and Engineering C, Vol. 28, 628-632, 2008.
23. P. Pallavicini, A. Taglietti, G. Dacarro, Y. Antonio, D. Fernandez, M. Galli, P. Grisoli, M. Patrini, G. S. De Magistris, and R. Zanoni, “Self-assembled monolayers of silver nanoparticles firmly grafted on glass surfaces: Low Ag+ release for an efficient antibacterial activity”, Journal of Colloid and Interface Science, Vol. 350 110–116, 2010.
24. T. G. Kuznetsova, M. N. Starodubtseva, N. I. Yegorenkov, S. A. Chizhik, and R. I. Zhdanov, “Atomic force microscopy probing of cell elasticity”, Micron, Vol. 38, 824–833, 2007.
25. A. Alessandrini and P. Facci, “AFM: A versatile tool in biophysics”, Measurement Science and Technology, Vol. 16, R65-R92, 2005
26. T. Osada, A. Itoh, and A. Ikai, “Mapping of the receptor-associated protein (RAP) binding proteins on living fibroblast cells using an atomic force microscope”, Ultramicroscopy, Vol. 97, 353–357, 2003.
27. http://medicine.tamhsc.edu/basic-sciences/sbtm/afm/modes.php
28. C. E. McNamee, N. Pyo, and K. Higashitani, “Atomic force microscopy study of the specific adhesion between a colloid particle and a living melanoma cell: Effect of the charge and the hydrophobicity of the Particle Surface”, Biophysical Journal, Vol. 91(5), 1960-1969, 2006.
29. N. Pyo, S. Tanaka, C. E. McNamee, Y. Kandaa, Y. Fukumori, H. Ichikawa, and K. Higashitani, “Effect of the cell type and cell density on the binding of living cells to a silica particle: An atomic force microscope study”, Colloids and Surfaces B: Biointerfaces, Vol. 53, 278-287, 2006.
30. C. E. McNamee, N. Pyo, S. Tanaka, I. U. Vakarelski, Y. Kanda, and K. Higashitani, ” Parameters affecting the adhesion strength between a living cell and a colloid probe when measured by the atomic force microscope”, Colloids and Surfaces B: Biointerfaces, Vol. 48, 176–182, 2006.
31. G. Binning and C. F. Quate, “Atomic force microscope”, Physical Review Letters, Vol. 56, 9, 1986.
32. Veeco Metrology Group, “Scanning probe microscopy training notebook”, 21, 2000.
33. http://web1.knvs.tp.edu.tw/AFM/ch2.htm.
34. Veeco Metrology Group, “Scanning probe microscopy training notebook”, 8, 2000.
35. Veeco Metrology Group, “Scanning probe microscopy training notebook”, 9, 2000.
36. C. B. Prater, P. G. Maivald, K. J. Kjoller, and M. G. Heaton, “Tapping mode imaging applications and technology”, 2004.
37. Veeco Metrology Group, “Scanning probe microscopy training notebook”, 37, 2000.
38. Veeco Metrology Group, “Scanning probe microscopy training notebook”, 45, 2000.
39. S. B. Velegol and B. E. Logan, “Contributions of bacterial surface polymers, electrostatics, and cell elasticity to the shape of AFM force curves”, Langmuir, Vol. 18, 5256-5262, 2002.
40. H. J. Grabke, “Surface and interface segregation in the oxidation of metals”, Surface and Interface Analysis, Vol. 30, 112, 2000.
41. C. Y. Rha, W. S. Kim, J. W. Kim, and H. H. Park, “Relationship between microstructure and electrochemical characteristics in steel corrosion”, Applied Surface Science, Vol. 169-170, 587-592 , 2001.
42. A. Bendavid, P. J. Martina, A. Jamtinga, and H. Takikawab, “Structural and optical properties of titanium oxide thin films deposited by filtered arc deposition”, Thin Solid Films, Vol. 355-356, 6-11, 1999.
43. H. Mostéfa-Sba, B. Domenichini, and S. Bourgeois, ”Iron deposition on TiO2(110): effect of the surface stoichiometry and roughness”, Surface Science Reports, Vol. 437, 107-115, 1999.
44. K. W. Lee, S. Lee, and J. W. Park, ”Electroplated Cu and sputtered Ta crystallographic texture degradation in Cu/Ta/SiOF layered structures”, Journal of The Electrochemical Society, Vol. 148, C131-135, 2001.
45. S, S. Datwani, R. A. Vijayendran, E. Johnson, and S. A. Biondi, “Mixed alkanethiol self-assembled monolayers as substrate for microarraying applications”, Langmuir, Vol. 20, 4970-4976, 2004.
46. D. Losic, J. G. Shapter, and J. J. Gooding, “Influence of surface topography on alkanethiol SAMs assembled from solution and by microcontact printing”, Langmuir, Vol. 17, 3307-3316, 2001.
47. J. Lahiri, E. Ostuni, and G. M. Whitesides, “Patterning ligands on reactive SAMs by microcontact printing”, Langmuir, Vol. 15, 2055-2066, 1999.
48. Y. L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, “Interfacial chemistries for nanoscale transfer printing”, Journal of the American Chemical Society, Vol. 124(26), 7655, 2002.
49. Y. Tai, A. Shaporenko, M. Grunze, and M. Zharnikov, “Effect of irradiation dose in making an insulator from a self-assembled monolayer”, The Journal of Physical Chemistry B, Vol. 109, 19411-19415.
50. Y. Tai, A. Shaporenko, W. Eck, M. Grunze, and M. Zharnikov, “Abrupt change in the structure of self-assembled monolayers upon metal evaporation”, Applied Physics Letter, Vol. 85, 6257-6259, 2004.
51. A. Ulman, “An introduction to ultrathin organic film from Langmuir-Blodgett to self-assembly”, 1991.
52. C. Vericat, M. E. Vela, G. A. Benitez, J. A. M. Gago, X. Torrelles, and R. C. Salvarezza, “Surface characterization of sulfur and alkanethiol self-assembled monolayers on Au(111)”, Journal of physics: Condensed Matter, Vol. 18, R867-R900, 2006.
53. P. E. Laibinis, G. M. Whitesides, D. L. Allara, Y. T. Tao, A. N. Parikh, and R. G. Nuzzo, ”Comparison of the structures and wetting properties of self-assemble monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold”, Journal of the American Chemical Society, Vol. 113, 7152-7167, 1991.
54. W. Geyer, V. Stadler, W. Eck, M. Zharnikov, A. Golzhauser, and M. Grunze, “Electron-induced crosslinking of aromatic self-assembled monolayers: Negative resist for nanolithography”, Applied Physics Letters, Vol. 75, 2401-2403, 1999.
55. S. Asta, P. Judita, P. Igoris, and T. Sigitas, ”Investigation of silver nanoparticles formation kinetics during reduction of silver nitrate with sodium citrate”, Materials Science, Vol. 15, No. 1, 2009.
56. K. G. Sujit, P. Anjali, K. Subrata, N. Sudip, and P. Tarasankar, “Fluorescence quenching of 1-methylaminopyrene near gold nanoparticles: Size regime dependence of the small metallic particles”, Chemical Physics Letters, Vol. 395, 366–372, 2004.
57. W. F. Stokey, “Shock and vibration handbook”, McGraw-Hill, New York, 7.1-7.44, 1989.
58. J. P. Cleveland, S. Manne, D. Bocek, and P. K. Hansma, “A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy”, Review of Scientific Instruments, Vol. 64, 1993.
59. C. H. Chang, J. D. Liao, J. J. Chen, M. S. Ju, and C. C. Lin, “Cell adhesion and related phenomena on the surface-modified Au-deposited nerve microelectrode examined by total impedance measurement and cell detachment tests”, Nanotechnology, Vol. 17, 2449–2457, 2006.
60. J. J. Senkevich, G. R. Yang, and T. M. Lu, “Thermal stability of mercaptan terminated self-assembled multilayer films on SiO2 surfaces”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 207, 139-145, 2002.
61. M. Hosokawa, K. Nogi, M. Naito, and T. Yokoyama, “Nanoparticle technology handbook”, Chapter 3, 127, 2008.
62. S. L. Westcott, S. J. Oldenburg, T. R. Lee, and N. J. Halas, “Formation and adsorption of clusters of gold nanoparticles onto functionalized silica nanoparticle surfaces”, Langmuir, Vol. 14, 5396-5401, 1998.