| 研究生: |
陳泓逸 Chen, Hong-Yi |
|---|---|
| 論文名稱: |
預成膜氣衝式噴注器霧化特性初步探討 A Fundamental Observation and Analysis of Sprays' Characteristics of Prefilming Airblast Injector |
| 指導教授: |
袁曉峰
Tony Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 渦漩式噴注器 、預成膜氣衝式噴注器 、噴霧量測 、PLIF |
| 外文關鍵詞: | swirl injector, prefilming airblast injector , spray measurement, PLIF |
| 相關次數: | 點閱:141 下載:97 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以自行設計的預成膜氣衝式噴注器進行各種不同設計參數及操作參數對霧化特性進行初步探討。
為了解預成膜氣衝式噴注器的各種設計參數對霧化機制的影響, 在這項研究中使用初步的 CFD 模擬來大致了解流場。 而預成膜氣衝式噴注器確切的霧化機制是通過高分辨率非侵入式光學實驗獲得的。如上所述,利用粒徑量測儀進行液滴尺寸量測、噴霧特徵攝影和平面激光誘導熒光 (PLIF) 以了解每個設計和操作下的特徵噴霧現象。
根據實驗結果顯示,於較短的預成膜長度,形成較薄的重疊區域,進而形成小顆粒、較均勻且較大角度的噴霧。於較大空氣流速時,氣流與液膜有較多的動量交換,可進一步使液滴破碎形成更均勻的噴霧。於液體質量流率較大時,其軸向動量較大使得噴霧角較小,但液體噴注撞擊壁面產生的小液滴較多,故噴霧粒徑為兩區域分布,進而使得平均粒徑無隨流率變化有所趨勢。
本論文對預成膜氣衝式噴注器霧化特性的各項探討,可提供後續大流率噴注器設計之參考。
In order to understand the influence of various design parameters of the prefilming airblast injector on the atomization mechanism, a series prefilming airblast injector was designed referring from leathers. The preliminary CFD simulation is used in this studied to understand the flow flied roughly. But the exact spray phenomena of prefilming airblast injector are acquired by high resolution non-intrusion optics experiments. As above, the droplet size measurement, spray characteristic photography, and planar laser-induced fluorescence (PLIF) are conducted to understand the characteristic spray phenomena under each design and operation.
The results show that, larger spray angle, smaller SMD, and smaller PatternationIndex at higher liquid mass flow rates with swirling airflow followed by shorter prefilming lengths.
[1]. A. H. Lefebvre. Fifty years of gas turbine fuel injection. Atomization and Sprays, 10(3-5), 2000. cited p. 5
[2]. Chaussonnet, G. (2014). Modeling of liquid film and breakup phenomena in Large-Eddy Simulations of aeroengines fueled by airblast atomizers (Doctoral dissertation, Institut National Polytechnique de Toulouse-INPT).
[3]. T. Wang, D. Faria, L.J. Stevens, J.S.C. Tan, J.F. Davidson, D.I. Wilson n,(2013), Flow patterns and draining films created by horizontal and inclined coherent water jets impinging on vertical walls
[4]. Shikshit Nawani a , Maharshi Subhash b,(2021), A review on multiple liquid jet impingement onto flat plate
[5]. S. Gepperth* , D. Guildenbecher, R. Koch, and H.-J. Bauer Institute of Thermal Turbomachinery (ITS), (2010),Karlsruhe Institute of Technology (KIT) Campus Süd, 76131 Karlsruhe, Germany
[6]. Inamura, T., Katagata, N., Nishikawa, H., Okabe, T., & Fumoto, K. (2019). Effects of prefilmer edge thickness on spray characteristics in prefilming airblast atomization. International Journal of Multiphase Flow, 121, 103117.
[7]. Shanmugadas, K. P., & Chakravarthy, S. R. (2017). A canonical geometry to study wall filming and atomization in pre-filming coaxial swirl injectors. Proceedings of the Combustion Institute, 36(2), 2467-2474.
[8]. Taniguchi, M., “PhotochemCAD 3: Diverse Modules for Photophysical Calculations with Access to Multiple Spectral Databases”.
[9]. Taniguchi, M., “PhotochemCAD 3: Diverse Modules for Photophysical Calculations with Access to Multiple Spectral Databases”.
[10]. Taniguchi, M., “Database of Absorption and Fluorescence Spectra of >300 Common Compounds for Use in PhotochemCAD”.
[11]. Wei-Cheng Chen, (2006), “The Analysis on The Breakup and Mixing of The Impinging Jets”, pp.209, National Cheng Kung University.