| 研究生: |
梁文紘 Liang, Wun-Hong |
|---|---|
| 論文名稱: |
應用噴墨印表機於紙基晶片上之生化檢測 Bio-sample Detection on Paper-based Devices Using Ink-jet Printers |
| 指導教授: |
楊瑞珍
Yang, Ruey-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 紙基晶片 、比色法 、生化檢測 、點照護檢驗 、噴墨印表機 |
| 外文關鍵詞: | Paper-based chip, Colorimetry, Point of Care, Bio-sample detection, Ink-jet printer |
| 相關次數: | 點閱:117 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究已成功的改良家用印表機用於噴敷生化試劑於paper-based chip當中,進行paper-based chip的生產,而在一般的生化實驗室都是使用Pipette將所需要的試劑滴入我們的paper-based chips當中,過程中只能透過手動的方式進行單件式的操作,當需要大量的製造裝置時就會顯得相當耗時,如果要購置一台自動化的生產設備,又礙於造價昂貴,基於成本的考量我們透過改良一般廉價的壓電噴頭印表機,使其能噴敷生化試劑於paper-based chips中,達到低成本的批量生產,而使用印表機製作的優點如下: 成本低廉、印表機的操作方便、 製作快速、精準、重現性好、適用於大量生產。
而在paper-based chip 設計的部分,我們採用2D的設計以簡化製造的程序,並且實際的應用於檢測AST(GOT)、ALT(GPT)值,依照傳統比色法,利用影像設備擷取影像並將顏色的平均強度數位化,再根據統計數據產生標準曲線。由實驗結果顯示,AST在0~105 (U/liter)濃度範圍內,其最佳的觀測時間為4分鐘,根據顏色的變化產生標準曲線呈線性的分佈(R2=0.982);ALT在0~125 (U/liter)濃度範圍內,其最佳的觀測時間為1分鐘,根據顏色的變化產生標準曲線呈現出線性的分佈(R2=0.989),此外我們也證明了不同濃度的葡萄糖對於檢測AST與ALT是不會造成影響的。
最後希望低成本紙基晶片可以簡單的應用於個人健康照護與應用於醫學上快速的診斷,以達到“點照護檢驗"POC (point of care) 理念的實現。
This study successfully improved the home printer for the spraying of biochemical reagents in paper-based chip production. General biochemistry laboratories use pipettes to introduce the required reagent into paper-based chips. One-piece operation is carried out manually, which is a time-consuming process if the devices are produced in large quantities. The use of automatic production saves time; however, such equipment comes at a high cost. Thus, in order to achieve low-cost mass production, this study attempts to improve the low-cost piezoelectric jet head printer that sprays biochemical reagents into paper-based chips. The following are the advantages of using the printer: low cost, ease of operation, high speed, precise, reproducible and applicable to large scale production.
A 2D chip design was employed to simplify the manufacturing process, and the chips were applied to real AST(GOT) and ALT(GPT) testing. The colorimetric method utilizes video equipment to capture images, averages the intensities of the colors and digitizes the information. It then generates a standard curve based on statistical data. The experimental results suggest that the best observation time for AST detection within the 0–105 U/liter concentration range is four min; the linear distribution of the standard curve established based on changes in color is R2 = 0.982. For ALT detection, the optimal observation time within the 0–125 U/liter concentration range is one min, and the linear distribution of the standard curve established based on changes in color is R2 = 0.989. In addition, we demonstrated the detections of AST and ALT were not affected by the impact of glucose concentration
Finally, wish the low-cost paper-based chips can be easily applied in personal health care and fast medical diagnosis, allowing the realization of the POC (point of care) concept.
1. E. A. S.C. Terry, A Gas Chromatographic Air Analyzer Fabricated on a Silicon Wafer, IEEE Transactions on Electron Devices, 26, 1880-1886, 1979.
2. N. G. A. Manz, H.M. Widmer, A Novel Concept for Chemical Sensing, Sensors and Actuators, 1, 244–248, 1990.
3. P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam and B. H. Weigl, Microfluidic Diagnostic Technologies for Global Public Health, Nature, 442, 412-418, 2006.
4. W. G. Lee, Y. G. Kim, B. G. Chung, U. Demirci and A. Khademhosseini, Nano/Microfluidics for Diagnosis of Infectious Diseases in Developing Countries, Advanced Drug Delivery Reviews, 62, 449-457, 2010.
5. T. Songjaroen, W. Dungchai, O. Chailapakul and W. Laiwattanapaisal, Novel, Simple and Low-cost Alternative Method for Fabrication of Paper-Based Microfluidics by Wax Dipping, Talanta, 85, 2587–2593, 2011.
6. W. Dungchai, O. Chailapakul and C. S. Henry, A Low-Cost, Simple, and Rapid Fabrication Method for Paper-Based Microfluidics Using Wax Screen-printing, Analyst, 136, 77–82, 2011.
7. S. T. P. Andres, W. Martinez, B. J. Wiley, M. Gupta and G. M. Whitesides, FLASH A Rapid Method for Prototyping Paper-Based Microfluidic Devices, Lab on a Chip, 2146–2150, 2008.
8. K. Abe, K. Suzuki and D. Citterio, Inkjet-Printed Microfluidic Multianalyte Chemical Sensing Paper, Anal. Chem., 80, 6928–6934, 2008.
9. K. Abe, K. Kotera, K. Suzuki and D. Citterio, Inkjet-Printed Paperfluidic Immuno-Chemical Sensing Device, Analytical and Bioanalytical Chemistry, 398, 885–893, 2010.
10. E. M. Fenton, M. R. Mascarenas, G. P. Lopez and S. S. Sibbett, Multiplex Lateral-Flow Test Strips Fabricated by Two-Dimensional Shaping, ACS Applied Materials & Interfaces, 1, 124-129, 2009.
11. E. Fu, B. Lutz, P. Kauffman and P. Yager, Controlled Reagent Ttransport in Disposable 2D Paper Networks, Lab Chip,10,918–920 , 2010.
12. E. Fu, P. Kauffman, B. Lutz and P. Yager, Chemical Signal Amplification in Two-Dimensional Paper Networks, Sensors and Actuators B, 149, 325–328, 2010.
13. E. Carrilho, A. W. Martinez and G. M. Whitesides, Understanding Wax Printing: A Simple Micropatterning Process for Paper-Based Microfluidics, Anal. Chem., 81, 7091-7095, 2009.
14. X. Li, J. Tian, T. Nguyen and W. Shen, Paper-Based Microfluidic Devices by Plasma Treatment, Anal. Chem., 80(23), 9131–9134, 2008.
15. A. W. Martinez, S. T. Phillips, Z. Nie, C. M. Cheng, E. Carrilho, B. J. Wiley and G. M. Whitesides, Programmable Diagnostic Devices Made from Paper and Tape, Lab Chip, 10, 2499–2504,2010.
16. B. R. Lutz, P. Trinh, C. Ball, E. Fu and P. Yager, Two-Dimensional Paper Networks: Programmable Fluidic Disconnects for Multi-Step Processes in Shaped Paper, Lab Chip, 11, 4274–4278, 2011.
17. A. K. Yetisen, M. S. Akram and Christopher R. Lowe, Paper-Based Microfluidic Point-of-Care Diagnostic Devices, Lab Chip, 13, 2210-2251, 2013.
18. H. Noh and S. T. Phillips, Fluidic Timers for Time-Dependent, Point-of-Care Assays on Paper, Anal. Chem., 82, 8071–8078, 2010.
19. H. Noh and S. T. Phillips, Metering the Capillary-Driven Flow of Fluids in Paper-Based Microfluidic Devices, Anal. Chem., 82, 4181–4187, 2010.
20. N. K. Thom, K. Yeung, M. B. Pillion and S. T. Phillips, “Fluidic Batteries” as Low-Cost Sources of Power in Paper-Based Microfluidic Devices, Lab Chip, 12, 1768–1770, 2012.
21. S. T. P. Audrey, K. Ellerbee, A. C. Siegel, K. A. Mirica, P. S. Andres, W. Martinez, N. Jain,M. Prentiss, and G. M. Whitesides, Quantifying Colorimetric Assays in Paper-Based, Anal.Chem., 81, 8447–8452, 2009.
22. S. T. P. Andres W. Martinez, E. Carrilho, S.l W. Thomas ,H. Sindi and G. M. Whitesides, Camera Phones and Paper-Based Microfluidic, Anal. Chem., 80, 3699–3707, 2008.
23. J. L. Delaney, C. F. Hogan, J. Tian and W. Shen, Electrogenerated Chemiluminescence Detection in Paper-Based Microfluidic Sensors, Anal. Chem., 83, 1300-1306, 2011.
24. S. J. Vella, P. Beattie, R. Cademartiri, A. Laromaine, A. W. Martinez, S. T. Phillips, K. A. Mirica and G. M. Whitesides, Measuring Markers of Liver Function Using a Micropatterned Paper Device Designed for Blood from a Fingerstick, Anal. Chem., 84, 2883−2891, 2012
25. N. R. Pollock, J. P. Rolland, S. Kumar, P. D. Beattie, S. Jain, F. Noubary, V. L. Wong, R. A. Pohlmann, U. S. Ryan and G. M. Whitesides, A Paper-Based Multiplexed Transaminase Test for Low-Cost, Point-of-Care Liver Function Testing, Sci. Transl. Med.,4,129-152,2012.
26. Z. W. Zhong, Z. P. Wang and G. X. D. Huang, Investigation of Wax and Paper Materials for The Fabrication of Paper-Based Microfluidic Devices, Microsyst Technol,18,649-659,2012.
27. E. Fu, S. A. Ramsey, P. Kauffman, B. Lutz and P. Yager, Transport in Two-Dimensional Paper Networks, Microfluidics and Nanofluidics, 10, 29-35, 2011.
28. E. M. Fenton, M. R. Mascarenas, G. P. Lopez and S. S. Sibbett, Multiplex Lateral-Flow Test Strips Fabricated by Two-Dimensional Shaping, ACS Applied Materials & Interfaces, 1, 124-129, 2009.
29. E. Carrilho, A. W. Martinez, and G. M. Whitesides, Understanding Wax Printing: A Simple Micropatterning Process for Paper-Based Microfluidics, Anal.Chem.,81, 7091–7095, 2009.
30. X. Yang, O. Forouzan, T. P. Brown and S. S. Shevkoplyas, Integrated Separation of Blood Plasma from Whole Blood for Microfluidic Paper-Based Analytical Devices, Lab on a Chip, 12, 274-280, 2012.
31. T. Songjaroen, W. Dungchai, O. Chailapakul, C. S. Henry and W. Laiwattanapaisal, Blood Separation on Microfluidic Paper-Based Analytical Devices, Lab on a Chip, 12, 3392-3398, 2012.
34. E. W. Washburn, The Dynamics of Capillary Flow, Physical Review, 17, 273-283, 1921.