簡易檢索 / 詳目顯示

研究生: 莊崴程
Chuang, Wei-Cheng
論文名稱: 利用可高度操控分子馬達摻混於螺旋超結構發展可全波長調控與圓偏振反轉之新穎光子元件
New photonic devices with full-wavelength tunability and circular-polarization revertability based on highly manipulatable nanomotor-doped helical superstructures
指導教授: 李佳榮
Lee, Chia-Rong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 90
中文關鍵詞: 分子馬達膽固醇液晶液晶雷射全白光調控
外文關鍵詞: chiral molecular motor, cholesteric liquid crystal, photonic bandgap, liquid crystal laser, tunability, helix invertibility
相關次數: 點閱:62下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要透過可改變旋性之手性分子馬達摻混向列型液晶(E7),首次發展出可全波長調控且可圓偏振反轉之新穎反射式光子元件。根據實驗結果顯示,此元件具有可反轉旋性及可全波長做光子能隙的調控,而雷射輸出的調控於正常旋性下可達136 nm,於反旋性的情況下之雷射輸出調控可達190 nm。本論文首先量測此材料的基本特性,接著混入向列型液晶製成膽固醇液晶,並量測照光後光子能隙以及圓偏振性的可調控性。
    本研究利用手性分子馬達作為膽固醇液晶的手性分子,藉由此手性材料照UV光會形成反旋性,以及提高溫度使提高回復初始旋性的效率,使兩者的反應速率達成動態平衡,藉此穩定反射波長。由實驗結果可知,先微調UV光照射膽固醇液晶樣品至光平穩狀態後,此時手性分子結構的變化過程為一動態平衡。若在此時改變照光強度或是改變環境溫度則改變此動態平衡下的光子能隙。因此藉由此調控方式,我們可於全波長作穩定調控。且在重複性的實驗中,在經過多次的循環下,其反射波段的位置並無明顯的差異。此外在雷射元件的應用中,我們將照光強度固定,然後微調溫度由25度至39度,可看到在此條件下,雷射輸出可由705 nm調控至569 nm,而所得的雷射閥值也介於13.63 ~18.99 nJ / pulse之間。

    In this thesis, photo-responsive chiral molecular motors (CRs) with photo-invertible helix ability are doped with liquid crystals (LCs) to induce a tunable cholesteric LC (CLC). During the photo-isomerization of the CRs by UV irradiation, the photonic bandgap (PBG) of CLC can be tuned bidirectionally in the full visible region accompanying with the handedness reversal. In order to effectively manipulate this supramolecular system, we use the dynamic balance of two continuous light and thermal stimulation to establish stable conditions of control. The photo-stationary state can be obtained by the dynamic equilibrium between the concentrations of trans and cis enantiomers through simultaneous occurrence of photo inversion and thermal relaxation. Under this kinetically partial racemic homogeneous equilibrium condition, the PBG and circular polarization of the CLC can be accurately manipulated. Taking advantage of this unique property, we develop a reliable laser which has a broadband tunability and handedness invertibility.
    The effective HTP is determined by the stereoselective photochemical equilibrium position of the chiral molecular motors composed of stable and unstable forms. Based on this advantage, a mirrorless bandedge laser with a broadband tunability and circular-polarization revertability can be obtained. The laser wavelength can be tuned more than 136 nm in stable trans state (initial handedness), and 190 nm in unstable cis state (inversed handedness).

    摘要 I SUMMARY II 誌謝 XII 目錄 XIII 圖目錄 XVI 表目錄 XX 第一章 緒論 1 第二章 液晶介紹 4 2.1 液晶簡介 4 2.2 液晶種類 5 2.2.1 溶致型液晶 5 2.2.2 熱致型液晶 6 2.2.3 圓盤狀分子 6 2.2.4 棒狀分子 6 2.3 液晶物理特性 9 2.3.1 秩序參數 10 2.3.2 光學異向性與雙折射性 10 2.3.3 介電異向性 15 2.3.4 溫度對液晶的影響 17 2.3.5 連續彈性體理論 18 第三章 膽固醇液晶與光致異構化材料 19 3.1 平面膽固醇液晶 19 3.1.1 膽固醇液晶的光學特性 20 3.1.2 影響膽固醇液晶螺距的因素 21 3.2 手性分子 22 3.2.1 立體異構化 24 3.2.2 手性分子的旋光度 25 3.2.3 手性分子的圓二色性量測 25 3.3光引致同分異構化反應 26 3.3.1 光引致異構化效應 26 3.4 手性分子馬達 28 3.4.1 手性分子馬達摻雜膽固醇液晶之照光效應 29 第四章 膽固醇液晶雷射原理 32 4.1 雷射原理 32 4.1.1 光與物質的交互作用 32 4.1.2 居量反轉 35 4.1.3 雷射的產生 36 4.2 膽固醇液晶雷射 38 4.2.1 分佈式回饋雷射機制 38 4.2.2 染料摻雜膽固醇液晶之能隙邊緣雷射機制 39 第五章 樣品製備與實驗架設 41 5.1 實驗材料 41 5.2 製作膽固醇液晶平面樣品 44 5.2.1 玻璃的清潔 44 5.2.2 製備空樣品 44 5.2.3 藥品濃度比例 45 5.3 實驗量測架設 46 5.3.1 反射頻譜量測架設 46 5.3.2 圓偏振旋性量測架設 47 5.3.3 雷射激發與輸出架設 48 第六章 實驗結果與討論 50 6.1 手性過度擁擠烯烴摻混向列型液晶之基本特性 50 6.1.1 吸收頻譜量測 50 6.1.2 圓二色性量測 52 6.1.3 螺旋扭曲力量測 52 6.1.4 全白光反射頻譜量測 56 6.1.5 圓偏振性量測 59 6.2 穩定操控膽固醇液晶樣品之反射波段 63 6.2.1 膽固醇液晶樣品之照光動態頻譜變化及重複性 64 6.2.2 膽固醇液晶樣品反射頻譜之升溫動態頻譜變化 69 6.2.3 藉以微調照光強度達到穩定操控膽固醇液晶樣品反射頻譜特性 71 6.2.4 藉以微調溫度達到穩定操控膽固醇液晶樣品反射頻譜特性 75 6.3 摻雜雷射染料之膽固醇液晶平板樣品雷射 78 6.3.1 原旋性之膽固醇液晶摻雜雷射染料的雷射輸出特性 78 6.3.2 反旋性之雷射輸出 82 第七章 結論與未來展望 85 7.1 結論 85 7.2 未來展望 85 參考文獻 86

    1. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon Press, New York, 1993).
    2. V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, “Lasing in chiral photonic structures,” Prog. Quant. Electron. 27, 369416 (2003).
    3. Y. Huang, M. Jin and S. Zhang, “Polarization-independent bandwidth-variable tunable optical filter based on cholesteric liquid crystal,” Jpn. J. Appl. Phys. 53, 072601 (2014).
    4. K.-H. Kim, D. H. Song, Z.-G. Shen, B. W. Park, K.-H. Park, J.-H. Lee, and T.-H. Yoon, “Fast switching of long-pitch cholesteric liquid crystal device,” Opt. Express 19, 1017410179 (2011).
    5. J. Kobashi, H. Yoshida, and M. Ozaki, “Planar optics with patterned chiral liquid crystals,” Nat. Photonics 10, 389393 (2016).
    6. I. Ilchishin and E. Tikhonov, “Dye-doped cholesteric lasers: Distributed feedback and photonic bandgap lasing models,” Prog. Quant. Electron. 41, 122 (2015).
    7. H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4, 676685 (2010).
    8. J.-D. Lin, M.-H. Hsieh, G.-J. Wei, T.-S. Mo, S.-Y. Huang, and C.-R. Lee, “Optically tunable/switchable omnidirectionally spherical microlaser based on a dye-doped cholesteric liquid crystal microdroplet with an azo-chiral dopant,” Opt. Express 21, 1576515776 (2013).
    9. L.-J. Chen, J.-D. Lin, S.-Y. Huang, T.-S. Mo, and C.-R. Lee, “Thermally and Electrically Tunable Lasing Emission and Amplified Spontaneous Emission in a Composite of Inorganic Quantum Dot Nanocrystals and Organic Cholesteric Liquid Crystals,” Adv. Opt. Mater. 1, 637643 (2013).
    10. Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable Lasing from a Cholesteric Liquid Crystal Film Embedded with a Liquid Crystal Nanopore Network,” Adv. Mater. 23, 54985501 (2011).
    11. T. V. Mykytiuk, I. P. Ilchishin, O. V. Yaroshchuk, R. M. Kravchuk, Y. Li, and Q. Li, “Rapid reversible phototuning of lasing frequency in dye-doped cholesteric liquid crystal,” Opt. Lett. 39, 64906493 (2014).
    12. T. H. Lin, Y. J. Chen, C.H. Wu, Y. G. Fuh, J. H. Liu and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability”, App. Phys. Let. 86, 161120 (2005).
    13. M. Y. Jeong, H. Choi, and J. W. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92, 051108 (2008).
    14. T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88, 061122 (2006).
    15. A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, and R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8, 48824885 (2012).
    16. K.-Y. Yu, S.-H. Chang, C.-R. Lee, T.-Y. Hsu, and C.-T. Kuo, “Thermally tunable liquid crystal distributed feedback laser based on a polymer grating with nano grooves fabricated by nano imprint lithography,” Opt. Mater. Express 4, 234240 (2014).
    17. S.-T. Hur, B. R. Lee, M.-J. Gim, K.-W. Park, M. H. Song, and S.-W. Choi, “Liquid-crystalline blue phase laser with widely tunable wavelength,” Adv. Mater. 25, 30023006 (2013).
    18. H. Yu, B. Tang, J. Li, and L. Li, “Electrically tunable lasers made from electro-optically active photonics band gap materials,” Opt. Express 13, 72437249 (2005).
    19. Z.-G. Zheng, B.-W. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C 3, 24622470 (2015).
    20. H. Bian, F. Yao, H. Liu, F. Huang, Y. Pei, C. Hou, and X. Sun, “Optically controlled random lasing based on photothermal effect in dye-doped nematic liquid crystals,” Liq. Cryst. 41, 14361441 (2014).
    21. M. Mathews, R. S. Zola, S. Hurley, D. K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures.” J. Am. Chem. Soc, 132, 51, 1836118366 (2010).
    22. A. Credi, S. Silvi and M. Venturi, Molecular Machines and Motors (Springer, 2014).
    23. A. S. Lubbe, N. Ruangsupapichat, G. Caroli and B. L. Feringa, “Control of rotor function in light driven molecular motors” J. Org. Chem. 76, 21, 85998610 (2011).
    24. T. J. White, S. A. Cazzell, A. S. Freer, D. K. Yang, L. Sukhomlinova, L. Su, T. Kosa, B. Taheri and T. J. Bunning “Widely tunable, photoinvertible cholesteric liquid crystals.” Adv. Mater. 23, 13891392 (2011).
    25. S. J. Abhoff, S. Iamsarrd, A. Bosco, J. J. L. M. Cornelissen, B. L. Feringa and N. Katsonis, “Time programmed helix inversion in phototunable liquid crystals” ChemComm, 49, 42564258 (2013).
    26. F. Reinitzer, “Beiträge zur kenntnis des cholesterins,” Monatshefte für Chemie 9, 421441 (1888).
    27. O. Lehmann, “Über fliessende Krystalle,” Zeitschrift für Physikalische Chemie 4, 462468 (1889).
    28. 松本正一、角田市良 (劉瑞祥 譯),液晶之基礎與應用,國立編譯館出版,中華民國九十二年。
    29. S. Chandrasekhar, “Recent developments in the physics of liquid crystals,” Contemp. Phys. 29, 527 (1988).
    30. F. C. Frank, “On the theory of liquid crystals,” Faraday Soc. Disc. 25, 19 (1958).
    31. P. G. Meyer, “Effects of electric and magnetic fields on the structure of cholesteric liquid crystals,” Appl. Phys. Lett. 12, 281282 (1968).
    32. A. Yariv, Optical Electronics in Modern Communications (Oxford University Press, New York, 1997).
    33. I. C. Khoo, Liquid Crystals-Physical Properties and Nonlinear Optical Phenomena (John Wiley & Sons, New York , 1995).
    34. J. Li, C. H. Wen, S. Gauza and R. B. Lu, “Refractive indices of Liquid crystals for Display Applications,” J. Disp. Technol. 1, 5161 (2005).
    35. C. W. Oseen, “The Theory of Liquid Crystals,” Trans. Faraday Soc. 29, 883900 (1933).
    36. H.-S. Kitzerrow, C. Bahr, Chirality in Liquid Crystals (Oxford University Press, New York, 1997).
    37. M. J. Cook and M. R. Wilson “Calculation of helical twisting power for liquid crystal chiral dopants,” J. Chem. Phys. 112, 1560 (2000).
    38. F. Zhang and D. K. Yang, “Temperature dependence of pitch and twist elastic constant in a cholesteric tosmectic A phase transition,” Liq. Cryst. 29, 14971501 (2002).
    39. L. G. Wade Jr, Organic Chemistry (Pearson Education, Inc, Boston, 2013).
    40. M. Baroncini, G. Ragazzon, S. Silvi, M. Venturia, and A. Credi, “Azobenzene photoisomerization: an old reaction for activating new molecular devices and materials,” Photochem. 44, 296323 (2017).
    41. I. K. Lednev, T. Q. Ye, L. C. Abbott, R. E. Hester and J. N. Moore, “Photoisomerization of a capped azobenzene in solution probed by ultrafast time resolved electronic absorption spectroscopy,” J. Phys. Chem. 102, 91619166 (1998).
    42. A. Miniewicz, H. Orlikowska, A. Sobolewska and S.Bartkiewicz, “Kinetics of thermal cis–trans isomerization in a phototropic azobenzene-based single-component liquid crystal in its nematic and isotropic phases,” Phys. Chem. 20, 29042913 (2018).
    43. 楊博智, “光學活性化合物之合成、物性探討及其在膽固醇型液晶元件之應用探討,” 國立成功大學化工研究所博士論文(2007)。
    44. S. J. Abhoff, S. Iamsarrd, A. Bosco, J. J. L. M. Cornelissen, B. L. Feringa and N. Katsonis, “Time programmed helix inversion in phototunable liquid crystals,” ChemComm. 49, 42564258 (2013).
    45. A. Credi, S. Silvi and M. Venturi, Molecular Machines and Motors (Springer, 2014).
    46. B. L. Feringa, “The art of building small: from molecular switches to motors (Nobel Lecture),” Angew. Chem. Int. Ed. 56, 1106011078 (2017).
    47. Y. Wang and Q. Li, “Light driven chiral molecular switches or motors in liquid crystals,” Adv. Mater. 24, 19261945 (2012).
    48. J. T. Verdeyen, Laser Electronics, 3rd ed. (Prentice Hall, Inc., New Jersey, 1995).
    49. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, New York, 2007).
    50. H. Kogelnik and C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18, 152154 (1971).
    51. 沈柯,雷射原理教程 (亞東書局,臺北市,1990).
    52. A. Yariv and P. Yeh, Photonics, 6th ed. (Oxford University Press, New York, 2007).
    53. D.-K. Yang and S. T. Wu, Fundamental of liquid crystal devices (Wiley, 2006).
    54. T. T. Tang, et al. “A simple method of determining the pitch of a chiral nematic liquid crystal.” Mol. Cryst. Liq. Cryst. 478, 143899 (2007).

    下載圖示 校內:2025-08-24公開
    校外:2025-08-24公開
    QR CODE