| 研究生: |
王立群 Wang, Li-Chun |
|---|---|
| 論文名稱: |
擬交感神經藥物經由調節細胞產生氧活性分子影響巨噬細胞之極化 Sympathomimetic drugs affect macrophage polarization through regulating cellular reactive oxygen species production |
| 指導教授: |
謝奇璋
Shieh, Chi-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 37 |
| 中文關鍵詞: | 氧活性分子 、NADPH氧化酶 2 (NOX2) 、擬交感神經藥物 、可樂定 、特布他林 、巨噬細胞極化 |
| 外文關鍵詞: | ROS, NADPH oxidase 2 (NOX2), sympathomimetic drugs, clonidine, terbutaline, macrophage polarization |
| 相關次數: | 點閱:191 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由白血球的NADPH氧化酶2 ( NOX2) 所產生的氧活性分子 (reactive oxygen species, ROS) 在非特異性宿主防禦中扮演重要的角色。先前的研究表示缺乏 NOX2所介導的ROS會抑制巨噬細胞 (macrophage) 分化成M2表型。腎上腺素能受體促效劑 (adrenergic receptor agonists, AR agonists) 是擬交感神經藥物 (sympathomimetic drugs)。根據報導,AR agonists 可以調節巨噬細胞極化。α-AR agonists 促使巨噬細胞分化成M1表型,而 β-AR agonists 促使巨噬細胞分化成M2表型。我們之前的研究顯示了相似的結果,也就是β-AR agonists 特布他林 (terbutaline, Ter) 在HL-60細胞中促使ROS產生,而且這種現象會被NOX抑制劑阻斷。然而,對於AR agonists誘導的ROS產生和巨噬細胞極化之間的關係仍然未知。在這項研究中,我們假設AR agonists會促使NOX2所介導的ROS產生以驅動野生型的骨髓來源的巨噬細胞 (bone marrow-derived macrophage, BMDM) 往M2表型極化。我們發現可樂定 (clonidine, Clo) 和Ter可以在BMDM顯著增加NOX2所介導的ROS。另外,我們的實驗結果顯示,Ter可能經由NOX2依賴性途徑促進BMDM極化成M2表型,而Clo刺激經由NOX2非依賴性途徑抑制M2巨噬細胞極化。我們研究可能有望揭示AR agonists通過氧化還原調節巨噬細胞分化的關鍵機制。這些發現可能為Ter在過敏性氣喘中的免疫調節活性提供新的見解。
Reactive oxygen species (ROS) produced by leukocyte NADPH oxidase 2 (NOX2) plays an essential role in nonspecific host defense. Previous studies indicated that the lack of NOX2-mediated ROS production inhibits macrophage differentiation into M2 phenotype. Adrenergic receptor (AR) agonists are sympathomimetic drugs. These agonists have been reported to modulate the immune system. In previous studies, AR agonists were found to regulate macrophage polarization. α-AR agonists promote macrophage differentiation toward M1 phenotype while β-AR agonists promote macrophage differentiation toward M2 phenotype. Our previous data showed a similar result that β2-AR agonist terbutaline (Ter) promoted ROS production in HL-60 cells, and the phenomena was blocked by NOX inhibitor. However, the relationship between AR-agonists-induced ROS production and macrophage polarization is still unknown. In this study, we hypothesized that AR agonists promote NOX2-mediated ROS production to drive the polarization of bone marrow-derived macrophages (BMDM) toward M2 phenotype in wild-type mice. We found that clonidine (Clo) and Ter significantly increase NOX2-mediated ROS production in BMDM. Our data showed that Ter may promote BMDM polarization toward M2 phenotype though the NOX2-dependent pathway, whereas Clo stimulation inhibited M2 macrophage polarization through NOX2-independent pathway. Our research may promise to reveal a key mechanism that AR agonists modulate macrophage differentiation through redox regulation. These findings may provide new insights into the immunomodulation activity of Ter in allergic asthma.
1. Lim, J.J., S. Grinstein, and Z. Roth, Diversity and Versatility of Phagocytosis: Roles in Innate Immunity, Tissue Remodeling, and Homeostasis. Front Cell Infect Microbiol, 2017. 7: 191.
2. Bedard, K., B. Lardy, and K.H. Krause, NOX family NADPH oxidases: not just in mammals. Biochimie, 2007. 89(9): 1107-1112.
3. Augsburger, F., et al., Pharmacological characterization of the seven human NOX isoforms and their inhibitors. Redox Biol, 2019. 26: 101272.
4. Singel, K.L. and B.H. Segal, NOX2-dependent regulation of inflammation. Clin Sci (Lond), 2016. 130(7): 479-490.
5. van der Vliet, A., K. Danyal, and D.E. Heppner, Dual oxidase: a novel therapeutic target in allergic disease. Br J Pharmacol, 2018. 175(9): 1401-1418.
6. Qu, J., et al., Recent developments in the role of reactive oxygen species in allergic asthma. J Thorac Dis, 2017. 9(1): E32-E43.
7. Kwon, B.I., et al., Enhanced Th2 cell differentiation and function in the absence of Nox2. Allergy, 2017. 72(2): 252-265.
8. Atri, C., F.Z. Guerfali, and D. Laouini, Role of Human Macrophage Polarization in Inflammation during Infectious Diseases. Int J Mol Sci, 2018. 19(6): 1801.
9. Yao, Y., X.H. Xu, and L. Jin, Macrophage Polarization in Physiological and Pathological Pregnancy. Front Immunol, 2019. 10: 792.
10. Tan, H.Y., et al., The Reactive Oxygen Species in Macrophage Polarization: Reflecting Its Dual Role in Progression and Treatment of Human Diseases. Oxid Med Cell Longev, 2016. 2016: 2795090.
11. Zhang, Y., et al., ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages. Cell Res, 2013. 23(7): 898-914.
12. Xu, Q., et al., NADPH Oxidases Are Essential for Macrophage Differentiation. J Biol Chem, 2016. 291(38): 20030-20041.
13. Griess, B., et al., Scavenging reactive oxygen species selectively inhibits M2 macrophage polarization and their pro-tumorigenic function in part, via Stat3 suppression. Free Radic Biol Med, 2020. 147: 48-60.
14. Sharma, D. and J.D. Farrar, Adrenergic regulation of immune cell function and inflammation. Semin Immunopathol, 2020. 42(6): 709-717.
15. Scanzano, A. and M. Cosentino, Adrenergic regulation of innate immunity: a review. Front Pharmacol, 2015. 6: 171.
16. Jurberg, A.D., et al., Neuroendocrine Control of Macrophage Development and Function. Front Immunol, 2018. 9: 1440.
17. Lamkin, D.M., et al., beta-Adrenergic-stimulated macrophages: Comprehensive localization in the M1-M2 spectrum. Brain Behav Immun, 2016. 57: 338-346.
18. Grisanti, L.A., et al., alpha1-adrenergic receptors positively regulate Toll-like receptor cytokine production from human monocytes and macrophages. J Pharmacol Exp Ther, 2011. 338(2): 648-657.
19. Zhang, X., et al., Sustained stimulation of beta2- and beta3-adrenergic receptors leads to persistent functional pain and neuroinflammation. Brain Behav Immun, 2018. 73: 520-532.
20. Wu, L., et al., Bidirectional Role of beta2-Adrenergic Receptor in Autoimmune Diseases. Front Pharmacol, 2018. 9: 1313.
21. Rambacher, K.M. and N.H. Moniri, The beta2-adrenergic receptor-ROS signaling axis: An overlooked component of beta2AR function? Biochem Pharmacol, 2020. 171: 113690.
22. Chiarella, S.E., et al., beta(2)-Adrenergic agonists augment air pollution-induced IL-6 release and thrombosis. J Clin Invest, 2014. 124(7): 2935-2946.
23. Kondo, H., S. Takeuchi, and A. Togari, beta-Adrenergic signaling stimulates osteoclastogenesis via reactive oxygen species. Am J Physiol Endocrinol Metab, 2013. 304(5): E507-E515.
24. Qian, L., et al., beta2 Adrenergic receptor activation induces microglial NADPH oxidase activation and dopaminergic neurotoxicity through an ERK-dependent/protein kinase A-independent pathway. Glia, 2009. 57(15): 1600-1609.
25. Orecchioni, M., et al., Macrophage Polarization: Different Gene Signatures in M1(LPS+) vs. Classically and M2(LPS-) vs. Alternatively Activated Macrophages. Front Immunol, 2019. 10: 1084.
26. Zhang, C., M. Yang, and A.C. Ericsson, Function of Macrophages in Disease: Current Understanding on Molecular Mechanisms. Front Immunol, 2021. 12: 620510.
27. Liu, S.X., et al., Trajectory analysis quantifies transcriptional plasticity during macrophage polarization. Sci Rep, 2020. 10(1): 12273.
28. Rosenbaum, D.M., S.G. Rasmussen, and B.K. Kobilka, The structure and function of G-protein-coupled receptors. Nature, 2009. 459(7245): 356-363.
29. Wootten, D., et al., Mechanisms of signalling and biased agonism in G protein-coupled receptors. Nat Rev Mol Cell Biol, 2018. 19(10): 638-653.
30. Hanania, N.A., et al., Beta-agonist intrinsic efficacy: measurement and clinical significance. Am J Respir Crit Care Med, 2002. 165(10): 1353-1358.
31. Petkevicius, K., et al., Macrophage beta2-adrenergic receptor is dispensable for the adipose tissue inflammation and function. Mol Metab, 2021. 48: 101220.
32. De Angelis, E., et al., Cross-Talk between Neurohormonal Pathways and the Immune System in Heart Failure: A Review of the Literature. Int J Mol Sci, 2019. 20(7): 1698.
33. Calzavacca, P., et al., Effects of Clonidine on the Cardiovascular, Renal, and Inflammatory Responses to Experimental Bacteremia. Shock, 2019. 51(3): 348-355.
34. Rastogi, R., et al., NOX Activation by Subunit Interaction and Underlying Mechanisms in Disease. Front Cell Neurosci, 2016. 10: 301.
35. Zhu, X. and E.K. Jackson, RACK1 regulates angiotensin II-induced contractions of SHR preglomerular vascular smooth muscle cells. Am J Physiol Renal Physiol, 2017. 312(4): F565-F576.
36. Pettinger, W.A. and E.K. Jackson, alpha 2-Adrenoceptors: Challenges and Opportunities-Enlightenment from the Kidney. Cardiovasc Ther, 2020. 2020: 2478781.
37. Chen, C., et al., beta-Adrenergic receptors stimulate interleukin-6 production through Epac-dependent activation of PKCdelta/p38 MAPK signalling in neonatal mouse cardiac fibroblasts. Br J Pharmacol, 2012. 166(2): 676-88.
38. Saradna, A., et al., Macrophage polarization and allergic asthma. Transl Res, 2018. 191: 1-14.
39. Lee, J.W., et al., The Role of Macrophages in the Development of Acute and Chronic Inflammatory Lung Diseases. Cells, 2021. 10(4): 879.
40. Girodet, P.O., et al., Alternative Macrophage Activation Is Increased in Asthma. Am J Respir Cell Mol Biol, 2016. 55(4): 467-475.
41. Abdelaziz, M.H., et al., Alternatively activated macrophages; a double-edged sword in allergic asthma. J Transl Med, 2020. 18(1): 58.
42. Orecchioni, M., et al., Corrigendum: Macrophage Polarization: Different Gene Signatures in M1(LPS+) vs. Classically and M2(LPS-) vs. Alternatively Activated Macrophages. Front Immunol, 2020. 11: 234.
43. Shapouri-Moghaddam, A., et al., Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol, 2018. 233(9): 6425-6440.
校內:2026-09-01公開