| 研究生: |
陳苰荃 Chen, Hong-cyuan |
|---|---|
| 論文名稱: |
應用Reissner-Mindlin離散層理論於功能性壓電材料板自然振動分析 An extended discrete layer Reissner-Mindlin theory for the free vibration analysis of functionally graded piezoelectric plates |
| 指導教授: |
吳致平
Wu, Chih-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 振動 、功能性材料 、壓電板 、離散層理論 |
| 外文關鍵詞: | Piezoelectric plates, Discrete layer theory, FG material, Vibration |
| 相關次數: | 點閱:74 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文建立了一套延伸的Reissner-Mindlin(RM) 離散層理論,且將其用來分析一個四邊簡支承之功能性壓電材料板的自然振動問題。在本文提出的理論中,該板將被人工分為NL個個別層;一套R-M型態的位移場結合線性近似的電位勢被應用到每一個組合層板的離散層中。將各個相鄰層界面之位移以及電位勢連續條件視為一種束制條件,且應用拉格朗日乘數法 (the method of Lagrange multipliers) 引入板能量方程式中。使用延伸的漢彌爾頓原理 (the extended Hamilton’s principle) 推導出一套板運動方程式以及相關合理的邊界條件。應用分離變數法,將場變數展開為滿足邊界條件的函數型式;其一是以面內座標表示的雙重富立葉級數 (the double Fourier series),另一部份是時間變數組成的週期函數。依此特定場量函數,求解該組運動方程式,則壓電板的自然頻率以及相對應的各模態場量變數沿厚度方向的分佈形狀,均可依序求解。本文最後亦針對分層數量以及材料性質梯度指標對自然頻率的影響作進一步的討論。
An extended discrete layer Reissner-Mindlin (RM) theory is proposed and developed for the free vibration analysis of simply-supported, functionally graded (FG) piezoelectric plates. In the present analysis, the plate is artificially divided into NL individual layers. A set of RM-type displacements combined with the linear approximation for the electric potential is assigned to each discrete layer constituting the plate. The displacement and electric potential continuity conditions at interfaces between adjacent layers are regarded as the constraints and introduced in the energy functional by means of the method of Lagrange multipliers. A set of motion equations and associated possible boundary conditions of the present theory are derived using the extended Hamilton’s principle. By means of the method of separation of variables, the field variables are expanded as the forms of double Fourier series in the in-surface coordinates and harmonic function in the time variable where the edge boundary conditions are satisfied. The natural frequencies of FG piezoelectric plates can then be determined using the specific field variables. The distributions of corresponding modal field variables through the thickness coordinate are also presented. A parametric study for the total number of artificial layers and the material property gradient index on the natural frequencies of FG piezoelectric plates is conducted.
[1] K.D. Jonnalagadda, G.E. Blandford, T.R. Tauchert, Piezothermoelastic composite plate analysis using first-order shear deformation theory, Computers & Structures 51 (1994) 79_89.
[2] A. Chattopadhyay, J. Li, H. Gu, Coupled thermo-piezoelectric-mechanical modal for smart composite laminates, AIAA Journal 37 (1999) 1633_1638.
[3] T.R. Tauchert, Plane piezothermoelastic response of a hybrid laminate_a benchmark problem, Composite Structures 39 (1997) 329_336.
[4] S. Kapuria, P.C. Dumir, A. Ahmed, An efficient coupled layerwise theory for dynamic analysis of piezoelectric composite beams, Journal of Sound and Vibration 261 (2003) 927_944.
[5] J. Oh, M. Cho, Higher order zig-zag theory for smart composite shells under mechnical-thermo-electric loading, International Journal of Solids and Structures 44 (2007) 100_127.
[6] P. Bisegna, G. Caruso, F. Maceri, A layerwise Reissner-Mindlin-type model for the vibration analysis and suppression of piezoactuated plates, Computers & Structures 79 (2001) 2309_2319.
[7] Z. Wu, W. Chen, A study of global-local higher-order theories for laminated composite plates, Composite Structures 79 (2007) 44_54.
[8] F. Ramirez, P.R. Heliger, E. Pan, Free vibration response of two-dimensional magneto-electro-elastic laminated plates, Journal of Sound and Vibration 292 (2006) 626_644.
[9] Y.Y. Tang, A.K. Noor, K. Xu, Assessment of computational models for thermoelectroelastic multilayered plates, Computers & Structures 61 (1996) 915_933.
[10] E. Carrera, Assessment of theories for free vibration analysis of homogeneous and multilayered plates, Shock and Vibration 11 (2004) 261_270.
[11] D.A. Saravanos, P.R. Heyliger, Mechanics and computational models for laminated piezoelectric beams, plates and shells, Applied Mechanics Reviews 52 (1999) 305_319.
[12] P. Heyliger, D.A. Saravanos, Exact free-vibration analysis of laminated plates with embedded piezoelectric layers, Journal of Acoustical Society of America 98 (1995) 1547_1557.
[13] P. Heyliger, S. Brooks, Free vibration of piezoelectric laminates in cylindrical bending, International Journal of Solids and Structures 32 (1995) 2945_2960.
[14] J.Z. Zhang, T.Y. Ng, K.M. Liew, Three-dimensional theory of elasticity for free vibration analysis of composite laminates via layerwise differential quadrature modeling, International Journal for Numerical Methods in Engineering 57 (2003) 1819_1844.
[15] Z. Zhang, C. Feng, K.M. Liew, Three-dimensional vibration analysis of multilayered piezoelectric composite plates, International Journal of Engineering Science 44 (2006) 397_408.
[16] H.J. Ding, R.Q. Xu, W.Q. Chen, Free vibration of transversely isotropic piezoelectric circular cylindrical panels, International Journal of Mechanical Science 44 (2002) 191_206.
[17] W.C. Chen, H.J. Ding, On free vibration of a functionally graded piezoelectric rectangular plate, Acta Mechanica 153 (2002) 207_216.
[18] G. Akhras, W.C. Li, Three-dimensional static, vibration and stability analysis of piezoelectric composite plates using a finite layer method, Smart Materials and Structures 16 (2007) 561_569.
[19] E. Pan, P.R. Heyliger, Free vibrations of simply supported and multilayered magneto-electro-elastic plates, Journal of Sound and Vibration 252 (2002) 429_442.
[20] Z. Zhong, T. Yu, Vibration of a simply supported functionally graded piezoelectric rectangular plate, Smart Materials and Structures 15 (2006) 1404_1412.
[21] C.P. Wu, J.Y. Lo, J.K. Chao, A three-dimensional asymptotic theory of laminated piezoelectric shells, CMC: Computers, Materials, & Continua 2 (2005) 119_137.
[22] C.P. Wu, J.Y. Lo, An asymptotic theory for dynamic response of laminated piezoelectric shells, Acta Mechanica 183 (2006) 177_208.
[23] C.P. Wu, Y.S. Syu, J.Y Lo, Three-dimensional solutions of multilayered piezoelectric hollow cylinders by an asymptotic approach, International Journal of Mechanical Sciences 49 (2007) 669_689.
[24] H.F. Tiersten, Linear Piezoelectric Plate Vibrations, Plenum Press, New York, 1969.