| 研究生: |
林玟君 Lin, Wen-Chun |
|---|---|
| 論文名稱: |
探討 miR-181b 在大腸直腸癌細胞株 SW480 及 SW620 的表現與其所扮演的角色 To study the functional role of miR-181b in colorectal cancer cell lines, SW480 and SW620 |
| 指導教授: |
曾大千
Tseng, T. Joseph |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物資訊與訊息傳遞研究所 Insitute of Bioinformatics and Biosignal Transduction |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 大腸直腸癌 、微型核糖核酸 |
| 外文關鍵詞: | colorectal cancer, miR-181b, NLK |
| 相關次數: | 點閱:188 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大腸直腸癌是在台灣的癌症中,發生率排名第三位的癌症,由於細胞中的miRNA 表現量是診斷及癒後的重要的指標之一,因此探討 miRNA 在細胞的功能是很重要的。從過去的文獻報導指出,在大腸直腸癌中,microRNA 181b (miR-181b) 在惡化的細胞中有高度表現的情形;而且 miR-181b 表現量較高的病患對藥物的反應不佳,且較易繼續惡化,這些結果顯示在大腸直腸癌中,miR-181b可能是一個癒後較差的因子。由於 microRNA 會負向調控基因表現,因此我們利用 miRTarBase 搜尋 miR-181b可能會調控的腫瘤抑制因子,Nemo-like kinase (NLK) 便是其中之一。由於在大腸直腸癌中,高達70% 的病患,其APC基因會產生突變,進而使Wnt pathway在其中持續活化;此外,在過去的文獻中指出,NLK 會藉由阻斷 β-catenin 與 TCF 的結合,達到抑制 Wnt pathway 的效果。因此本篇藉由研究 miR-181b 調控 NLK 來探討其在大腸直腸癌中所扮演的角色,以提出一個在治療大腸直腸癌症上的新指標。我們分析從同個病人在不同癌化時期所取出的癌細胞株,SW480 與 SW620,發現較惡化的 SW620 的 miR-181b 的確表現較高、而且其 NLK 的表現較低;此外,在SW480的細胞內表現 miR-181b 後,NLK 的表現也會跟著下降;從 reporter assay 的實驗中也顯示miR-181b會影響NLK 3’-untranslated region (3’UTR) 中帶有 miR-181b 結合位的片段。最後從病人檢體中觀察NLK mRNA及miR-181b的表現,我們認為NLK可能在癌化過程中會被負向調控的因子之一,而 miR-181b 是其中一個調控者,而且由於 miR-181b 在復發的病人表現量亦較高,因此將可進一步探討其與術後復發的關聯性。
Colorectal cancer (CRC) has the third incident rate in Taiwan. Because microRNAs are good biomarkers for diagnosis, it is important to study the functional roles of miRNAs. Previous clinical studies reported that microRNA 181b (miR-181b) is highly expresses in tumor tissues that compared with normal tissues in clinical samples. In addition, it also reported that patients with higher miR-181b in tumor had bad response to chemotherapy. It implies that miR-181b is a poor prognostic factor in CRCs. Because microRNAs repress gene translation, we investigated the possible tumor suppressed targets of miR-181b by miRTarBase, and NLK (Nemo-like kinase) is one of candidates. In colorectal cancer, up to 70% patients have APC gene mutation; therefore, it caused Wnt pathway constantly activation. NLK has reported that it inhibits Wnt pathway by blocking the interaction between β-catenin and T cell factor (TCF). In this study, we would like to validate the functional role of miR-181b in CRCs. The SW480 and SW620 cell lines which derived from the primary tumor and a lymph node metastasis are used in this study, respectively, and we found SW620 cell line has higher expression of miR-181b but lower NLK expression. In addition, over-expressed miR-181b in SW480 cell would decrease NLK level, and the reporter assay data showed miR-181b could regulate gene by targeting to NLK 3'UTR. Finally, we investigated miR-181b and NLK mRNA expression in clinical samples, and the result implies NLK down-regulated in tumorigenesis and miR-181b is one of regulators. In addition, miR-181b is higher in recurrence patients, so cancer recurrence would be a new aspect to study.
1. Smith, T.G., P.A. Robbins, and P.J. Ratcliffe, The human side of hypoxia-inducible factor. Br J Haematol, 2008. 141(3): p. 325-34.
2. Borges, J.C. and C.H. Ramos, Protein folding assisted by chaperones. Protein Pept Lett, 2005. 12(3): p. 257-61.
3. Zhao, C.Q., et al., Association of arsenic-induced malignant transformation with DNA hypomethylation and aberrant gene expression. Proc Natl Acad Sci U S A, 1997. 94(20): p. 10907-12.
4. Chen, H., et al., Nickel ions increase histone H3 lysine 9 dimethylation and induce transgene silencing. Mol Cell Biol, 2006. 26(10): p. 3728-37.
5. Yeh, C.H., et al., RNA-binding protein HuR interacts with thrombomodulin 5'untranslated region and represses internal ribosome entry site-mediated translation under IL-1 beta treatment. Mol Biol Cell, 2008. 19(9): p. 3812-22.
6. Baccarelli, A. and V. Bollati, Epigenetics and environmental chemicals. Curr Opin Pediatr, 2009. 21(2): p. 243-51.
7. Cheung, H.H., et al., Methylation of an intronic region regulates miR-199a in testicular tumor malignancy. Oncogene, 2011.
8. Lee, R.C., R.L. Feinbaum, and V. Ambros, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993. 75(5): p. 843-54.
9. Abrahante, J.E., et al., The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs. Dev Cell, 2003. 4(5): p. 625-37.
10. Lee, Y., et al., MicroRNA maturation: stepwise processing and subcellular localization. EMBO J, 2002. 21(17): p. 4663-70.
11. Lee, Y., et al., MicroRNA genes are transcribed by RNA polymerase II. EMBO J, 2004. 23(20): p. 4051-60.
12. Palatnik, J.F., et al., Control of leaf morphogenesis by microRNAs. Nature, 2003. 425(6955): p. 257-63.
13. Bartel, B. and D.P. Bartel, MicroRNAs: at the root of plant development? Plant Physiol, 2003. 132(2): p. 709-17.
14. John, B., et al., Human MicroRNA targets. PLoS Biol, 2004. 2(11): p. e363.
15. Lewis, B.P., C.B. Burge, and D.P. Bartel, Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005. 120(1): p. 15-20.
16. Hatfield, S. and H. Ruohola-Baker, microRNA and stem cell function. Cell Tissue Res, 2008. 331(1): p. 57-66.
17. Zhang, H., et al., MiR-148a promotes apoptosis by targeting Bcl-2 in colorectal cancer. Cell Death Differ, 2011.
18. Chen, C.Z., et al., MicroRNAs modulate hematopoietic lineage differentiation. Science, 2004. 303(5654): p. 83-6.
19. Reinhart, B.J., et al., The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 2000. 403(6772): p. 901-6.
20. Volinia, S., et al., A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A, 2006. 103(7): p. 2257-61.
21. Wei, J., et al., Epigenetic alterations of tumor marker microRNAs: towards new cancer therapies. Drug News Perspect, 2010. 23(10): p. 655-61.
22. Xi, Y., et al., Prognostic Values of microRNAs in Colorectal Cancer. Biomark Insights, 2006. 2: p. 113-121.
23. Nielsen, B.S., et al., High levels of microRNA-21 in the stroma of colorectal cancers predict short disease-free survival in stage II colon cancer patients. Clin Exp Metastasis, 2011. 28(1): p. 27-38.
24. Kong, W., et al., MicroRNA-155 regulates cell survival, growth, and chemosensitivity by targeting FOXO3a in breast cancer. J Biol Chem, 2010. 285(23): p. 17869-79.
25. Lu, J., et al., MicroRNA expression profiles classify human cancers. Nature, 2005. 435(7043): p. 834-8.
26. Jopling, C.L., K.L. Norman, and P. Sarnow, Positive and negative modulation of viral and cellular mRNAs by liver-specific microRNA miR-122. Cold Spring Harb Symp Quant Biol, 2006. 71: p. 369-76.
27. Branch, A.D. and C.M. Rice, Antisense gets a grip on miR-122 in chimpanzees. Sci Transl Med, 2010. 2(13): p. 13ps1.
28. Naguibneva, I., et al., The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol, 2006. 8(3): p. 278-84.
29. Shi, L., et al., hsa-mir-181a and hsa-mir-181b function as tumor suppressors in human glioma cells. Brain Res, 2008. 1236: p. 185-93.
30. Zhu, W., et al., miR-181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines. Int J Cancer, 2010. 127(11): p. 2520-9.
31. Iliopoulos, D., et al., STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell, 2010. 39(4): p. 493-506.
32. Nakajima, G., et al., Non-coding MicroRNAs hsa-let-7g and hsa-miR-181b are Associated with Chemoresponse to S-1 in Colon Cancer. Cancer Genomics Proteomics, 2006. 3(5): p. 317-324.
33. Glade, M.J., Food, nutrition, and the prevention of cancer: a global perspective. American Institute for Cancer Research/World Cancer Research Fund, American Institute for Cancer Research, 1997. Nutrition, 1999. 15(6): p. 523-6.
34. Forster, M., et al., Cost-effectiveness of diet and exercise interventions to reduce overweight and obesity. Int J Obes (Lond), 2011.
35. Eaden, J.A., K.R. Abrams, and J.F. Mayberry, The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut, 2001. 48(4): p. 526-35.
36. Chung, D.C., The genetic basis of colorectal cancer: insights into critical pathways of tumorigenesis. Gastroenterology, 2000. 119(3): p. 854-65.
37. Fearnhead, N.S., M.P. Britton, and W.F. Bodmer, The ABC of APC. Hum Mol Genet, 2001. 10(7): p. 721-33.
38. Smith, G., et al., Mutations in APC, Kirsten-ras, and p53--alternative genetic pathways to colorectal cancer. Proc Natl Acad Sci U S A, 2002. 99(14): p. 9433-8.
39. Narayan, S. and D. Roy, Role of APC and DNA mismatch repair genes in the development of colorectal cancers. Mol Cancer, 2003. 2: p. 41.
40. Bisgaard, M.L., et al., Familial adenomatous polyposis (FAP): frequency, penetrance, and mutation rate. Hum Mutat, 1994. 3(2): p. 121-5.
41. Rubinfeld, B., et al., Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science, 1996. 272(5264): p. 1023-6.
42. Su, L.K., et al., APC binds to the novel protein EB1. Cancer Res, 1995. 55(14): p. 2972-7.
43. Matsumine, A., et al., Binding of APC to the human homolog of the Drosophila discs large tumor suppressor protein. Science, 1996. 272(5264): p. 1020-3.
44. Munemitsu, S., et al., Regulation of intracellular beta-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein. Proc Natl Acad Sci U S A, 1995. 92(7): p. 3046-50.
45. Kemler, R., From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion. Trends Genet, 1993. 9(9): p. 317-21.
46. Ikeda, S., et al., Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. EMBO J, 1998. 17(5): p. 1371-84.
47. Aberle, H., et al., beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J, 1997. 16(13): p. 3797-804.
48. Morin, P.J., et al., Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science, 1997. 275(5307): p. 1787-90.
49. Molenaar, M., et al., XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell, 1996. 86(3): p. 391-9.
50. Hinck, L., et al., Beta-catenin: a common target for the regulation of cell adhesion by Wnt-1 and Src signaling pathways. Trends Biochem Sci, 1994. 19(12): p. 538-42.
51. Moon, R.T., A. DeMarais, and D.J. Olson, Responses to Wnt signals in vertebrate embryos may involve changes in cell adhesion and cell movement. J Cell Sci Suppl, 1993. 17: p. 183-8.
52. Hinck, L., W.J. Nelson, and J. Papkoff, Wnt-1 modulates cell-cell adhesion in mammalian cells by stabilizing beta-catenin binding to the cell adhesion protein cadherin. J Cell Biol, 1994. 124(5): p. 729-41.
53. Korinek, V., et al., Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science, 1997. 275(5307): p. 1784-7.
54. Mayer, K., et al., Ectopic activation of lymphoid high mobility group-box transcription factor TCF-1 and overexpression in colorectal cancer cells. Int J Cancer, 1997. 72(4): p. 625-30.
55. Stacey, D.W., Cyclin D1 serves as a cell cycle regulatory switch in actively proliferating cells. Curr Opin Cell Biol, 2003. 15(2): p. 158-63.
56. Stanic, G., et al., C-myc expression in the microvessels of medulloblastoma. Coll Antropol, 2011. 35(1): p. 39-42.
57. Shimizu, H., et al., Transformation by Wnt family proteins correlates with regulation of beta-catenin. Cell Growth Differ, 1997. 8(12): p. 1349-58.
58. Ishitani, T., et al., The TAK1-NLK-MAPK-related pathway antagonizes signalling between beta-catenin and transcription factor TCF. Nature, 1999. 399(6738): p. 798-802.
59. Li, M., et al., TAB2 scaffolds TAK1 and NLK in repressing canonical Wnt signaling. J Biol Chem, 2010. 285(18): p. 13397-404.
60. Brott, B.K., B.A. Pinsky, and R.L. Erikson, Nlk is a murine protein kinase related to Erk/MAP kinases and localized in the nucleus. Proc Natl Acad Sci U S A, 1998. 95(3): p. 963-8.
61. Ishitani, T., et al., The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca(2+) pathway to antagonize Wnt/beta-catenin signaling. Mol Cell Biol, 2003. 23(1): p. 131-9.
62. Emami, K.H., et al., Nemo-like kinase induces apoptosis and inhibits androgen receptor signaling in prostate cancer cells. Prostate, 2009. 69(14): p. 1481-92.
63. Yasuda, J., et al., Nemo-like kinase induces apoptosis in DLD-1 human colon cancer cells. Biochem Biophys Res Commun, 2003. 308(2): p. 227-33.
64. Schetter, A.J., et al., MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA, 2008. 299(4): p. 425-36.
65. Monzo, M., et al., Overlapping expression of microRNAs in human embryonic colon and colorectal cancer. Cell Res, 2008. 18(8): p. 823-33.
66. Leibovitz, A., et al., Classification of human colorectal adenocarcinoma cell lines. Cancer Res, 1976. 36(12): p. 4562-9.
67. Provenzani, A., et al., Global alterations in mRNA polysomal recruitment in a cell model of colorectal cancer progression to metastasis. Carcinogenesis, 2006. 27(7): p. 1323-33.
68. Wang, B., et al., TGFbeta-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3. Oncogene, 2010. 29(12): p. 1787-97.
69. Ji, J., et al., Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells. Hepatology, 2009. 50(2): p. 472-80.
70. Wang, Y., et al., Transforming growth factor-beta regulates the sphere-initiating stem cell-like feature in breast cancer through miRNA-181 and ATM. Oncogene, 2011. 30(12): p. 1470-80.
71. Ishitani, T., et al., Nemo-like kinase suppresses Notch signalling by interfering with formation of the Notch active transcriptional complex. Nat Cell Biol, 2010. 12(3): p. 278-85.
72. Cui, G., et al., Clinical and biological significance of nemo-like kinase expression in glioma. J Clin Neurosci, 2011. 18(2): p. 271-5.
73. O'Connell, M.J., et al., Relationship between tumor gene expression and recurrence in four independent studies of patients with stage II/III colon cancer treated with surgery alone or surgery plus adjuvant fluorouracil plus leucovorin. J Clin Oncol, 2010. 28(25): p. 3937-44.
74. Grimson, A., et al., MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell, 2007. 27(1): p. 91-105.
75. Shkumatava, A., et al., Coherent but overlapping expression of microRNAs and their targets during vertebrate development. Genes Dev, 2009. 23(4): p. 466-81.