| 研究生: |
伍維君 Wu, Wei-Chun |
|---|---|
| 論文名稱: |
高感度二氧化鈦氫氣感測器之製備及其感測特性研究 Preparation and Sensing Characteristics of High-Sensitive TiO2 Hydrogen Sensors |
| 指導教授: |
陳慧英
Chen, Huey-Ing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 147 |
| 中文關鍵詞: | 二氧化鈦 、氫氣感測器 、奈米管 、陽極氧化 、氧空缺 、鉑 |
| 外文關鍵詞: | titanium oxide, hydrogen sensor, nanotube, anodization, oxygen vacancy, platinum |
| 相關次數: | 點閱:102 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究係以二氧化鈦奈米管(titania nanotubes, TNT)元件作為氫氣感測器,旨在探討TNT製備變因對所得元件氫氣感測特性之影響,並進一步解析氫氣在TNT上之吸附行為。實驗中,先將鈦濺鍍於石英板上,接著在NH4F-H2O-EG溶液中進行陽極氧化以得TNT,再經煅燒並鍍上金電極而得感測元件。研究中首先改變陽極氧化時間來尋求最適氫氣感測之奈米管管長。其次,利用不同煅燒氣氛製備TNT,以瞭解二氧化鈦之氧空缺在感測上扮演之角色。為進一步提升元件之感測性能,以濺鍍法製備担載鉑觸媒之奈米管(Pt-TNT)元件,並探討濺鍍時間對元件感測性能之影響。
實驗結果顯示,陽極氧化1小時所得元件之TNT管長為1.1 μm,對氫氣之感測靈敏度(sensitivity, S)高,且響應速率快。煅燒氣氛中氧含量對元件之電性及感測性能影響甚鉅;隨著氧含量之提高,所得TNT之晶格氧增加,而氧空缺數目減少,因此元件電性呈現較大之電阻值。當煅燒氣氛為純氧時,所得元件之S值最高,但響應時間亦最長。推測由於氧空缺在感測中扮演提供氫氣解離吸附座之角色,故當氧空缺數目少時,吸附速率變慢,進而導致響應時間增長;另一方面,由於晶格氧增加,導致其與氫原子反應釋出之電子數增加,因此靈敏度提高。
比較TNT與Pt-TNT元件之氫氣感測特性發現,担載鉑觸媒能提高感測靈敏度,並縮短響應時間。TNT元件於303 K、1.02 % H2/Air下之S值為1.8×105;而担載鉑觸媒後,S值提高至4.6×105;實驗結果亦發現,響應時間由1106 s縮短至952 s,而回復時間由10 s縮短至8 s。鉑担載量之多寡亦對元件電性及感測特性造成影響;濺鍍鉑40 s之元件,背景電阻值最大,且其靈敏度最高;若鉑担載量再提高,將導致靈敏度降低,推測此係因担載量過高時,鉑將形成膜層而使背景電阻驟降,而使靈敏度下降。
進一步解析氫氣在TNT上之吸附行為,結果發現此吸附行為符合Langmuir模式,且暫態響應之初始反應速率可由一階動力來描述。由估算結果得知,氫氣在TNT與Pt-TNT上之吸附熱分別為-13.86 kJ mole-1 (423~473 K)、-6.61 kJ mole-1 (303~343 K);而氫氣於兩元件之吸附活化能則分別為24.59、26.70 kJ mole-1。
綜上所述,本研究成功製備出TNT陣列型氫氣感測器,具備有高靈敏度、寬偵檢範圍之優點,惟響應速率稍慢。而担載鉑觸媒之Pt-TNT元件,可進一步提升靈敏度,並縮短響應時間,展現應用上之發展潛力。
In this work, the titania nanotubes (TNT) devices were fabricated as hydrogen sensors. The influences of TNT preparation conditions on hydrogen sensing characteristics were investigated. Furthermore, the hydrogen adsorption behavior on the TNT was comprehended. Experimentally, a thin Ti film was deposited on the quartz by RF-sputtering and then anodized in the NH4F/ethylene glycol solution. Subsequently, the sample was calcined following by depositing Au electrodes to obtain the sensing device. Firstly, the anodization time was determined in order for the optimizing tube length of TNT. The calcination atmosphere was varied to elucidate the role of oxygen vacanicies in sensing hydrogen. To promote the sensing performances in advance, platinum-loaded TNT devices (Pt-TNT) were prepared by sputtering. The effect of sputtering time on sensing characteristics was investigated as well.
From the experimental results, it revealed that the TNT device with a tube length of 1.1 μm (anodized for 1 h) showed a high sensitivity (S) toward hydrogen, and fast response. Moreover, the electric properties and sensing performances of devices were strongly affected by the atmosphere of calcination. As increasing the oxygen content of atmosphere, the number of lattice oxygen in the resulting TNT was increased whereas that of oxygen vacancies was contrarily decreased, leading to an increase of the electric resistance of device. The device obtained by calcined in pure oxygen ambience showed the largest S value and the slowest response. The oxygen vacancy on TNT was inferred to serve as the adsorption site for hydrogen, and the lattice oxygen. Therefore, less oxgen vancancies in TNT causing the lower adsorption rate would result in the slower response. On the other hand, owing to the increase of lattice oxygen, more electrons could release to TNT by reacting with hydrogen atoms, resulting in the promotion of sensing sensitivity.
As compared with the TNT device, the Pt-TNT device showed higher sensitivity and shorter response time. The S value for TNT device at 303K and 1% H2/Air was 1.8×105, and that for Pt-TNT was increased to a value of 4.6×106. In the meanwhile, the response time was reduced from 1106 to 952 s, and recovery time from 10 to 8 s. It also found that the Pt loading amount on TNT would make large changes in the electric properties and sensing performances of devices. The device with Pt sputtering time of 40 s showed a maximum electric resistance and a highest sensitivity. If further increase the Pt loading amount, the sensitivity of device would contrarily decrease. This was probably attributed from the formation of Pt layer on TNT.
Furthermore, the hydrogen adsorption behavior on TNT was analyzed. The experimental results showed that the hydrogen adsorption could be described by the Langmuir model, and the initial adsorption kinetics could be expressed by the 1st - order reaction model. From the result of analysis, the adsorption heats of hydrogen on TNT and Pt-TNT were estimated as -13.86 kJ mole-1 (423~473 K) and -6.61 kJ/mole (303~343 K), respectively, and the corresponding activation energies of two devices were 24.59 and 26.70 kJ mole-1, respectively.
In conclusion, the TNT arrays based hydrogen sensors were successfully fabricated, which demonstrated merits of high sensitivity and wide detection range. However, the response rate was somewhat low. By loading Pt catalyst, the Pt-TNT device would promote the sensitivity to some extents and largely enhance the response rate, exhibiting the promising development in practical uses.
1. The oil drum, http://www.theoildrum.com/.
2. M. S. Dresselhaus, and I. L. Thomas, “Alternative energy technologies”, Nature, 414, 6861, 332-337 (2001).
3. I. Cumalioglu, A. Ertas, Y. Ma, and T. Maxwell, “State of the art : hydrogen storage”, J. Fuel Cell Sci. Technol., 5, 3, 034001 (2008).
4. V. Ahuja and R. Green, “Application of matrix heat exchangers to thermomechanical exergy recovery from liquid hydrogen”, Cryogenics, 38, 9, 857-867 (1998).
5. X. Bevenot, A. Trouillet, C. Gagnaire, and M. Clement, “Hydrogen leak detection using an optical fibre sensor for aerospace applications”, Sens. Actuator B-Chem., 67, 1-2, 57-67 (2000).
6. L. Yan, H. Ma, B. Wang, W. Mao, and Y. Chen, “Advanced purification of petroleum refinery wastewater by catalytic vacuum distillation”, J. Hazard. Mater., 178, 1-3, 1120-1124 (2010).
7. W. C. Xu, K. Takahashi, Y. Matsuo, Y. Hattori, M. Kumagai, S. Ishiyama, K. Kaneko, and S. Iijima, “Investigation of hydrogen storage capacity of various carbon materials”, Int. J. Hydrog. Energy, 32, 13, 2504-2512 (2007).
8. D. Mori and K. Hirose, “Recent challenges of hydrogen storage technologies for fuel cell vehicles”, Int. J. Hydrog. Energy, 34, 10, 4569-4574 (2009).
9. K. W. Lin, H. I. Chen, C. T. Lu, Y. Y. Tsai, H. M. Chung, C. Y. Chen, and W. C. Liu, “A hydrogen sensing Pd/InGaP metal-semiconductor (MS) Schottky diode hydrogen sensor”, Semicond. Sci. and Technol., 18, 7, 615-619 (2003).
10. C. W. Hung, T. H. Tsai, H. I. Chen, Y. Y. Tsai, T. P. Chen, and W. C. Liu, “Further investigation of a hydrogen-sensing Pd/GaAs heterostructure field-effect transistor (HFET)”, Sens. Actuator B-Chem., 132, 2, 587-592 (2008).
11. J. R. Huang, W. C. Hsu, Y. J. Chen, T. B. Wang, K. W. Lin, H. I. Chen, and W. C. Liu, “Comparison of hydrogen sensing characteristics for Pd/GaN and Pd/Al0.3Ga0.7As Schottky diodes”, Sens. Actuator B-Chem., 117, 1, 151-158 (2006).
12. T. H. Tsai, H. I. Chen, K. W. Lin, C. W. Hung, C. H. Hus, L. Y. Chen, K. Y. Chu, and W. C. Liu, “Comprehensive study on hydrogen sensing properties of a Pd-AlGaN-based Schottky diode”, Int. J. Hydrog. Energy, 33, 12, 2986-2992 (2008).
13. S. Shuklaa, P. Zhanga, H. J. Choa, S. Seala, and L. Ludwigb, “Room temperature hydrogen response kinetics of nano-micro-integrated doped tin oxide sensor”, Sens. Actuator B-Chem., 120, 2, 573-583 (2007).
14. L. C. Tien, P. W. Sadik, D. P. Norton, L. F. Voss, S. J. Pearton, H. T. Wang, B. S. Kang, F. Ren, J. Jun, and J. Lin, “Hydrogen sensing at room temperature with Pt-coated ZnO thin films and nanorods”, Appl. Phys. Lett., 87, 22, 222106 (2005).
15. L. Boon-Brett, J. Bousek, and P. Moretto, “Reliability of commercially available hydrogen sensors for detection of hydrogen at critical concentrations: part II - selected sensor test results”, Int. J. Hydrog. Energy, 34, 1. 562-571 (2009).
16. C. H. Han, D. W. Hong, S. D. Han, J. Gwak, and K. C. Sing, “Catalytic combustion type hydrogen gas sensor using TiO2 and UV-LED”, Sens. Actuator B-Chem., 125, 1, 224-228 (2007).
17. M. Sakthivel and W. Weppner, “A portable limiting current solid-state electrochemical diffusion hole type hydrogen sensor device for biomass fuel reactors: engineering aspect”, Int. J. Hydrog. Energy, 33, 2, 905-911 (2008).
18. I. Simon and M. Arndt, “Thermal and gas-sensing properties of a micromachined thermal conductivity sensor for the detection of hydrogen in automotive applications”, Sens. Actuator A-Phys., 97-98, 104-108 (2002).
19. H. I. Chen, Y. I. Chou, and C. Y. Chu, “A novel high-sensitive Pd/InP hydrogen sensor fabricated by electroless plating”, Sens. Actuator B-Chem., 85, 1-2, 10-18 (2002).
20. C. C. Wang, S. Akbar, and M. J. Madou, “Ceramic based resistive sensors”, J. Electroceram., 2, 4, 273-282 (1998).
21. H. Hasegawa, “Fermi level pinning and Schottky barrier height control at metal-semiconductor interfaces of InP and related materials”, Jpn. J. Appl. Phys., 38, 2B, 1098-1102 (1999).
22. Y. I. Chou, C. M. Chen, W. C. Liu, and H. I. Chen, “A New Pd/InP Schottky hydrogen sensor fabricated by electrophoretic deposition with Pd nanoparticles”, IEEE Electron Device Lett., 26, 2, 62-65 (2005).
23. Y. I. Chou, H. I. Chen, and C. K. Huiung, “Electroless plated Pd/GaAs Schottky diode and its application to hydrogen detection”, Solid State Phenom., 113, 81-84 (2007).
24. I. Hotovy, J. Huran, L. Spiess, H. Romanus, D. Buc, and R. Kosiba, “NiO-based nanostructured thin films with Pt surface modification for gas detection”, Thin Solid Films, 515, 2, 658-661 (2006).
25. Y. K. Jun, H. S. Kim, J. H. Lee, and S. H. Hong, “High H2 sensing behavior of TiO2 films formed by thermal oxidation”, Sens. Actuator B-Chem., 107, 1, 264-270 (2005).
26. O. K. Varghese, and C. A. Grimes, “Metal oxide nanostructures as gas sensors”, Encyclopedia of Nanoscience and Nanotechnology, American Scientific Publishers, 5, 505-521 (2004).
27. D. Gong, C. A. Grimes, and O. K. Varghese, “Titanium oxide nanotube arrays prepared by anodic oxidation”, J. Mater. Res., 16, 12, 3331-3334 (2001).
28. M. Paulose, O. K. Varghese, G. K. Mor, C. A. Grimes, and K. G. Ong, “Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes”, Nanotechnology, 17, 2, 398-402 (2006).
29. S. A. Akbar, L. B. Younkman, and P. K. Dutta, “Selectivity of an anatase TiO2-based gas sensor”, Polymers in sensors, 690, 161-167 (1998).
30. C. H. Han, D. W. Hong, I. J. Kim, J. Gwak, S. D. Han, and K. C. Singh, “Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor”, Sens. Actuator B-Chem., 128, 1, 320-325 (2007).
31. X. Du, Y. Wang, Y. Mu, L. Gui, P. Wang, and Y. Tang, “A new highly selective H2 sensor based on TiO2/PtO-Pt dual-layer films”, Chem. Mater., 14, 9, 3953-3957 (2002).
32. E. Maciak and Z. Opilski, “Transition metal oxides covered Pd film for optical H2 gas detection”, Thin Solid Films, 515, 23, 8351-8355 (2007).
33. H. Zhang, Z. Li, L. Liu, X. Xu, Z. Wang, W. Zheng, B. Dong, and C. Wang, “Enhancement of hydrogen monitoring properties based on Pd-SnO2 composite nanofibers”, Sens. Actuator B-Chem., 147, 1, 111-115 (2010).
34. S. Joo, I. Muto, and N. Hara, “Hydrogen gas sensor using Pt- and Pd-added anodic TiO2 nanotube films”, Int. J. Hydrog. Energy, 157, 6, J221-J226 (2010).
35. C. A. Grimes, “Synthesis and application of highly ordered arrays of TiO2 nanotubes”, J. Mater. Chem., 17, 15, 1451-1457 (2007).
36. O. K. Varghese, G. K. Mor, C. A. Grimes, M. Paulose, and M. N. Mukherjee, “A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations”, J. Nanosci. Nanotechnol., 4, 733-737 (2004).
37. A. L. Linsebigler, G. Lu, and J. T. Yates, “Photocatalysis on TiO2 surface: principles, mechanisms, and selected results”, Chem. Rev., 95, 3, 735-758 (1995).
38. M. Paulose, K. Shankar, O. K. Varghese, G. K. Mor, and C. A. Grimes, “Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells”, J. Phys. D-Appl. Phys., 39, 12, 2498-2503 (2006).
39. D. Kim, A. Ghicov, and P. Schmuki, “TiO2 nanotube arrays : elimination of disordered top layers (“nanograss”) for improved photoconversion efficiency in dye-sensitized solar cells”, Electrochem. Commun., 10, 12, 1835-1838 (2008).
40. O. K. Varghese, D. Gong, M. Paulose, K. G. Ong, and C. A. Grimes, “Hydrogen sensing using titania nanotubes”, Sens. Actuator B-Chem., 93, 1-3, 338-344 (2003).
41. R. Zhao, M. Xu, J. Wang, and G. Chen, “A pH sensor based on the TiO2 nanotube array modified Ti electrode”, Electrochim. Acta, 55, 20, 5647-5651 (2010).
42. S. Tamazoe, T. Okumura, Y. Hitomi, T. Shishido, and T. Tanaka, “Mechanism of photo-oxidation of NH3 over TiO2 : fourier transform infrared study of the intermediate species”, J. Phys. Chem. C, 111, 29, 11077-11085 (2007).
43. K. Hadjiivanov, J. Lamotte, and J. C. Lavalley, “FTIR Study of low-temperature CO adsorption on pure and ammonia-precovered TiO2 (anatase)”, Langmuir, 13, 13, 3374-3381 (1997).
44. H. Miyazaki, T. Hyodo, Y. Shimizu, and M. Egashira, “Hydrogen-sensing properties of anodically oxidized TiO2 film sensors: effects of preparation and pretreatment conditions”, Sens. Actuator B-Chem., 108, 1-2, 467-472 (2005).
45. H. Zhang, C. Xie, Y. Zhang, G. Liu, C. Liu, X. Ma, and W. F. Zhang, “Effects of thermal treatment under different atmospheres on the spectroscopic properties of nanocrystalline TiO2”, J. Appl. Phys., 103, 10, 103107 (2008).
46. Y. Shimizu, N. Kuwano, T. Hyodo, and M. Egashira, “High H2 sensing performance of anodically oxidized TiO2 film contacted with Pd”, Sens. Actuator B-Chem., 83, 1-3, 195-201 (2002).
47. O. K. Varghese, D. Gong, M. Paulose, C, A, Grimes, and E, C, Dickey, “Crystallization and high-temperature structure stability of titanium oxide nanotube arrays”, J. Mater. Res., 18, 1, 156-165 (2003).
48. Q. Chen, D. Xul, Z. Wu, and Z. Liu, “Free-standing TiO2 nanotube arrays made by anodic oxidation and ultrasonic splitting”, Nanotechnology, 19, 36, 365708-365713 (2008).
49. J. H. Ming, L. H. Xiang, M. D. Fang, Y. J. Jun, and M. S. Cai, “Preparation and hydrogen gas sensitive characteristics of highly ordered titania nanotube arrays”, Chin. Sci. Bull., 53, 9, 1352-1357 (2008).
50. A. Qurashi, N. Tabetm, M. Faiz, and T. Yamzaki, “Ultra-fast microwave synthesis of ZnO nanowires and their dynamic response toward hydrogen gas”, Nanoscale Res. Lett., 4, 8, 948-954 (2009).
51. H. T. Wang, B. S. Kang, F. Ren, L. C. Tien, P. W. Sadik, D. P. Norton, S. J. Pearton, and J. Lin, “Hydrogen-selective sensing at room temperature with ZnO nanorods”, Appl. Phys. Lett., 86, 24, 243503 (2005).
52. T. Mukherjee, S. K. Hazra, and S. Basu, “Porous titania thin films grown by anodic oxidation for hydrogen sensors”, Mater. Manuf. Process., 21, 3, 247-251 (2006).
53. G. K. Mor, O. K. Varghese, M. Paulose, K. G. Ong, and C. A. Grimes, “Fabrication of hydrogen sensors with transparent titanium oxide nanotube-array thin films as sensing elements”, Thin Solid Films, 496, 1, 42-48 (2006).
54. E. Şennik, Z. Çolak, N. Kılınç, and Z. Z. Öztürk, “Synthesis of highly-ordered TiO2 nanotubes for a hydrogen sensor”, Int. J. Hydrog. Energy, 35, 9, 4420-44 (2010).
55. J. M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, and P. Schmuki, “TiO2 nanotubes: self-organized electrochemical formation, properties and applications”, Curr. Opin. Solid State Mater. Sci., 11, 1-2, 3-18 (2007).
56. J. L. Tao, J. L. Zhao, C. C. Tang, Y. R. Jang, and Y. X. Li, “Mechanism study of self-organized TiO2 nanotube arrays by anodization”, New J. Chem., 32, 2164-2168 (2008).
57. K. Yasuda, J. M. Macak, S. Berger, A. Ghicov, and P. Schmuki, “Mechanistic aspects of the self-organization process for oxide nanotube formation on valve metals”, J. Electrochem. Soc., 154, 9, C472-C478 (2007).
58. K. S. Raja, T. Gandhi, and M. Misra, “Effect of water content of ethylene glycol as electrolyte for synthesis of ordered titania nanotubes”, Electrochem. Commun., 9, 5, 1069-1076 (2007).
59. A. Jaroenworaluck, D. Regonini, C. R. Bowen, R. Stevens, and D. Allsopp, “Macro, micro and nanostructure of TiO2 anodised films prepared in a fluorine-containing electrolyte”, J. Mater. Sci., 42, 16, 6729-6734 (2007).
60. K. Iijima, M. Goto, S. Enomoto, H. Kunugita, K. Ema, M. Tsukamoto, N. Ichikawa, and H. Sakama, “Influence of oxygen vacancies on optical properties of anatase TiO2 thin films”, J. Lumines., 128, 5-6, 911-913 (2008).
61. N. D. Abazović, M. I. Čomor, M. D. Dramićania, D. J. Jovanović, S. P. Ahrenkiel, and J. M. Nedeljković, “Photoluminescence of anatase and rutile TiO2 particles”, J. Phy. Chem. B, 110, 25366-25370 (2006).
62. L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, “Low-temperature wafer-scale production of ZnO nanowire arrays”, Angew. Chem. Int. Ed., 42, 6, 3031-3034 (2003).
63. H. Ling, A. Li, D. Wu, T. Zu, Z. Liu, and N. Ming, “Structure and electrical properties of SrBi2Ta2O9 thin films annealed in different atmosphere”, Mater. Lett., 49, 5, 303-307 (2001).
64. M. J. Madou and S. R. Morrison, “Chemical sensing with solid state devices”, Academic press, Inc., London, 1989.
65. W. Göpel and G. Rocker, “Intrinsic defects of TiO2(110): interaction with chemisorbed O2, H2, CO, and CO2”, Phys. Rev. B, 28, 6, 3427-3438 (1983).
66. L. D. Birkefeld, A. M. Azad, and S. A. Akbar, “Carbon monoxide and hydrogen detection by anatase modification of titanium dioxide”, J. Am. Ceram. Soc., 75, 11, 2964-2968 (1992).
67. 張維剛,“二氧化鈦奈米管陣列氫氣感測器之研究”,成功大學化工系碩士論文 (2010)。
68. X. Rena, K. Senapatib, W. T. Jiang, and C. H. Jiang, “Formation of ordered TiO2 nanostructural arrays with tunable shapes by magnetron sputtering method”, Mater. Chem. Phys., 126, 1-2, 1-5 (2011).
69. N. Daude, C. Gout, and C. Jouanin, “Electronic band structure of titanium dioxide”, Phys. Rev. B, 15, 6, 3229-3235 (1977).
70. S. Liu, J. Wu, X. Liu, R. Jiang, “TiO2/V-TiO2 composite photocatalysis with an n-n heterojunction semiconductor structure”, J. Mol. Catal. A-Chem., 332, 1-2, 84-92 (2010).
71. F. Arntz and Y. Yacoby, “Electroabsorption in rutile (TiO2)”, Phys. Rev. Lett., 17, 16, 857–860 (1966).
72. K. Vos and H. J. Krusemeyer, “Low temperature electroreflectance of TiO2”, Solid State Commun., 15, 5, 949-952 (1974).
73. C. K. Chung, M. W. Liao, and C. W. Lai, “Effects of oxygen flow ratios and annealing temperatures on Raman and photoluminescence of titanium oxide thin films deposited by reactive magnetron sputtering”, Thin Solid Films, 518, 5, 1415-1418 (2009).
74. G. B. Raupp and J. A. Dumesic, “Adsorption of CO, CO2, H2, and H2O on titania surfaces with different oxidation states”, J. Phys. Chem., 89, 24, 5240-5246 (1985).
75. 林士達,“陽極氧化製備二氧化鈦奈米管陣列氫氣感測器之研究”, 成功大學化工系碩士論文 (2009)。