簡易檢索 / 詳目顯示

研究生: 林奕霈
Lin, Yi-Pei
論文名稱: 基於模擬之重型多軸無人機槳葉最佳化設計方法
An Optimal Approach to Design Heavy-Lift Multicopter Blades Based on Simulation
指導教授: 黃才烱
Huang, Tsai-Jeon
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 104
中文關鍵詞: 無人機螺旋槳葉設計最佳化模擬田口方法
外文關鍵詞: UAV, Propeller blade design, Optimization, Simulation, Taguchi method
相關次數: 點閱:40下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,無人機產業迅速發展,其應用領域相當廣泛,從商業至軍事領域皆在應用範疇之中,因此,各國紛紛投入資源生產無人機與其零組件,強化獨自研發且供應自主化的能力,尤其在全球供應鏈高度集中、對中國製造商高度依賴的背景下,我國本土供應鏈的建立顯得更加迫切。本研究針對重型無人機的應用領域,旨在設計一單支達25公斤升力之螺旋槳葉,並盡可能降低其氣動噪音,為本土無人機螺旋槳葉的自主設計提供技術參考。
    本研究針對新設計或既有之螺旋槳葉,提出一系統性的槳葉最佳化設計方法,並根據所提出的研究方法,設計出一款可達目標升力並減低噪音之螺旋槳葉。方法流程首先依據設計需求建立基準槳葉的幾何模型,並透過氣動模擬計算其升力、阻力與噪音等性能表現。接著對每項影響性能的設計因子進行分析效應,尋找在升力與噪音控制上兼具最佳化效果的設計方案。完成最佳化流程後,再利用有限元素法進行槳葉結構強度驗證,確保其在運行條件下的安全性。整體流程涵蓋模型建立、器動性能模擬、因子效應分析、設計最佳化與強度驗證等步驟。
    本研究結合電腦輔助建模與計算流體力學模擬,評估多軸無人機螺旋槳葉的性能,並採用田口方法分析提升實驗效率,配合有限元素法驗證結構強度,完成兼具升力需求、降噪效果與安全性的槳葉設計。結果顯示,螺旋槳葉直徑、螺旋槳槳距、槳距角分布與翼型對升力表現具顯著影響,且葉尖彎曲設計對噪音具有抑制效果,與基準槳葉相比,最佳化槳葉在較低的工作轉速可達到相同升力,並減少氣動噪音。進一步對最佳化槳葉進行強度驗證,證實最佳化螺旋槳葉的結構強度足夠安全。本研究所提出的設計方法,可做為設計高升力螺旋槳之參考方向,對推進國內無人機產業自主化、縮短研發時程、降低開發成本具有一定的貢獻。

    In recent years, UAVs developed rapidly for both commercial and military applications. Countries raced to strengthen in-house R&D and reduce reliance on Chinese manufacturing, which was especially urgent for Taiwan. This study focused on heavy-lift multicopters, aiming to design a propeller blade capable of producing 25 kgf lift while minimizing noise.
    A systematic design procedure was proposed in this study. The procedure started with developing a baseline blade model by available design information. Then, aerodynamic simulations were conducted to obtain the outcome of the physical performances such as lift, drag, and noise by varying design factors for the blade model. Taguchi method was selected to analyze the influence of each design factor and identify the optimal combinations which can improve the lift and reduce noise. Finally, the newly design blade was verified the structural safety based on finite element method under operating loadings.
    By combining CAD modeling, CFD simulations, and design factor analysis, the optimized blade met the lift requirement, ran more quietly, and remained structurally safe. Key findings showed that diameter, pitch, pitch angle distribution, and airfoil shape strongly influenced lift, while a curved tip reduced noise. Compared with the baseline, the optimized blade achieved the same lift at lower RPM with less noise, offering performance and efficiency gains to support a more self-reliant UAV industry.

    摘要 I 誌謝 VI 目錄 VII 表目錄 IX 圖目錄 XI 符號說明 XV 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 4 1.4 論文架構 11 第二章 研究背景 14 2.1 翼型簡介 14 2.2 螺旋槳簡介和扭轉設計 17 2.3 NACA 四位數翼型 19 2.4 螺旋槳推進效率 22 2.5 無人機噪音規範與聲壓級 22 2.6 田口品質工程方法 25 第三章 研究方法 28 3.1 基準螺旋槳葉 29 3.2 建立槳葉模型 31 3.3 氣動模擬分析 34 3.4 槳葉設計因子和水準 40 3.5 應用有限元素法分析槳葉強度 46 第四章 結果與討論 50 4.1 基準槳葉之設計表現 50 4.2 田口方法之最佳化選擇 51 4.2.1 田口直交表實驗結果 52 4.2.2 因子效應與討論 54 4.2.3 最大升力槳葉因子之選擇 61 4.3 利用葉尖彎曲降低氣動噪音 62 4.4 最佳化螺旋槳葉之氣動性能 64 4.5 最佳化螺旋槳葉靜態結構分析 67 第五章 結論與建議 72 5.1 模擬實驗結論 72 5.2 未來方向與建議 73 參考文獻 76 附錄 80

    Airfoil Tools. (2025). Airfoil database and analysis tools. Retrieved May 7, 2025, from http://www.airfoiltools.com/
    Baykar. (2025). Türkiye's first indigenous UCAV Bayraktar TB2 exceeds 1 million flight hours. Retrieved April 27, 2025, from https://baykartech.com/en/press/turkiyes-first-indigenous-ucav-bayraktar-tb2-exceeds-1-million-flight-hours/
    Biermann, D., & Hartman, E. P. (1939). Full-scale wind-tunnel tests of two 3-blade propellers having different blade-pitch distributions (NACA TR No. 658). National Advisory Committee for Aeronautics. https://digital.library.unt.edu/ark:/67531/metadc66316/
    Brungart, T. A., Olson, S. T., Kline, B. L., & Yoas, Z. W. (2019). The reduction of quadcopter propeller noise. Noise Control Engineering Journal, 67(4), 252–269.
    Christian, A., & Cabelly, R. (2017). Initial investigation into the psychoacoustic properties of small unmanned aerial system noise. NASA Langley Research Center.
    Curle, N., & Lighthill, M. J. (1955). The influence of solid boundaries upon aerodynamic sound. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 231, 505–514. https://doi.org/10.1098/rspa.1955.0191
    Drone Industry Insights. (2022). Industry Leading Drone Market Analysis 2022–2030. https://droneii.com/drone-market-analysis-2022-2030
    European Union Aviation Safety Agency. (2023). UAS noise measurement guidelines (Issue 1, Revision 1). https://www.easa.europa.eu/en/downloads/136676/en
    FAA Test Prep. (2025). Forces on an airfoil. In Flight theory for pilots – Chapter 17. Retrieved May 10, 2025, from https://www.faatest.com/books/FLT/Chapter17/ForcesonanAirfoil.htm
    Federal Aviation Administration. (2021). Summary of Small Unmanned Aircraft Rule (Part 107). https://www.faa.gov/uas
    Federal Aviation Administration. (2023). Chapter 5: Aerodynamics of flight. In Pilot's handbook of aeronautical knowledge (FAA-H-8083-25C). U.S. Department of Transportation. https://www.faa.gov/sites/faa.gov/files/07_phak_ch5_0.pdf
    FlyingBasket. (2025). FB3 Heavy-lift Drone [Image]. Retrieved August 8, 2025, from https://flyingbasket.com/fb3-order
    Geydirici, E., Derman, K. C., & Cadirci, S. (2024). Aerodynamic Performance Evaluation of a Coaxial Octocopter Based on Taguchi Method. Journal of Fluids Engineering, 146(10), 101204. https://doi.org/10.1115/1.4065229
    Glauert, H. (1926). The elements of aerofoil and airscrew theory. Cambridge University Press.
    Gur, O. (2022). Airfoil importance for propeller optimized design. Paper presented at the 56th 3AF International Conference on Applied Aerodynamics, Toulouse, France. Retrieved from https://www.researchgate.net/publication/359699974
    International Civil Aviation Organization. (2018). Manual on Remotely Piloted Aircraft Systems (RPAS) (Doc 10019).
    Ismail, K. A. R., & Rosolen, C. V. A. G. (2019). Effects of the airfoil section, the chord and pitch distributions on the aerodynamic performance of the propeller. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41, 131. https://doi.org/10.1007/s40430-019-1618-x
    Jacobs, E. N., Ward, K. E., & Pinkerton, R. M. (1933). The characteristics of 78 related airfoil sections from tests in the variable-density wind tunnel. NACA Report No. 460.
    Kaushik, V., & Shankar, N. (2022). Statistical analysis using Taguchi method for designing a robust wind turbine. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 100(3), 92–105. https://doi.org/10.37934/arfmts.100.3.92105
    Lighthill, M. J. (1952). On sound generated aerodynamically I. General theory. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 211, 564–587. https://doi.org/10.1098/rspa.1952.0060
    NASA Glenn Research Center. (2023). Winglets. NASA. https://www1.grc.nasa.gov/beginners-guide-to-aeronautics/winglets/
    Noda, R., Ikeda, T., Nakata, T., & Liu, H. (2022). Characterization of the low-noise drone propeller with serrated Gurney flap. Frontiers in Aerospace Engineering, 1, 1004828. https://doi.org/10.3389/fpace.2022.1004828
    Prandtl, L. (1918). Tragflügeltheorie. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 451–477.
    Salah, B. M. (2022). Propeller analysis by blade element momentum theory [Bachelor’s thesis, Istanbul Technical University]. ResearchGate. https://www.researchgate.net/publication/359013561_PROPELLER_ANALYSIS_BY_BLADE_ELEMENT_MOMENTUM_THEORY
    Sun, J., Yonezawa, K., Tanabe, Y., Sugawara, H., & Liu, H. (2023). Blade twist effects on aerodynamic performance and noise reduction in a multirotor propeller. Drones, 7, 252. https://doi.org/10.3390/drones7040252
    The CFI Guy. (2018). No, this was not a prop strike. The benefits of these props are huge. The CFI Guy. https://www.thecfiguy.com/single-post/2018/02/19/no-this-was-not-a-prop-strike-the-benefits-of-these-props-are-huge
    Toray Industries, Inc. (2025). Data Sheets. Toray Carbon Fiber Composite Materials. Retrieved August 11, 2025, from https://www.cf-composites.toray/resources/data_sheets/#anc1cf-composites.toray
    Van Treuren, K. W., Sanchez, R., Bennett, B., & Wisniewski, C. (2021). Design of propellers for minimum induced drag. AIAA AVIATION Forum. https://doi.org/10.2514/6.2021-2225
    Wei, W., Ma, Y., Wei, S., Wang, D., Guo, M., & Yan, Q. (2024). Analysis and evaluation of aerodynamic noise characteristics of toroidal propeller. Drones, 8, 753. https://doi.org/10.3390/drones8120753
    Wikipedia contributors. (2025). Airfoil. Wikipedia. Retrieved May 7, 2025, from https://en.wikipedia.org/wiki/Airfoil
    Wisniewski, C. F., Byerley, A. R., Heiser, W. H., Van Treuren, K. W., & Liller, W. R. (2015). The influence of airfoil shape, tip geometry, Reynolds number and chord length on small propeller performance and noise (AIAA 2015-2266). 33rd AIAA Applied Aerodynamics Conference, Dallas, TX. https://doi.org/10.2514/6.2015-2266
    田屋科技股份有限公司。AXH-E230RS 單旋翼無人直升機。AVIX。取自 https://www.avix-tech.com/products-detail/axh_e230rs/,2025。
    李輝煌,田口方法-品質設計的原理與實務(第四版),高立圖書,新北市,2023。
    徐碩,四軸飛行器葉片之田口方法最佳化設計,國立成功大學機械工程研究所碩士論文,台南市,2022。
    黃仲宏、齊立平、彭文陽、陳炳輝、宋朝宗、林煥榮、鄒杰炯、江振瑋、黃居正,台灣無人機技術與產業發展之挑戰,財團法人中技社,臺北市,2023年2月。
    雷虎科技股份有限公司。X-450 Scout。TTRobotix。取自 https://www.ttrobotix.com/zh-tw/products/detail/928.html,2025。
    賴舜平,應用測試方法設計葉片改善四軸飛行器效率,國立成功大學機械工程研究所碩士論文,台南市,2016。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE