簡易檢索 / 詳目顯示

研究生: 吳忞儒
Wu, Min-Lu
論文名稱: 探討Klf10調控Sei-1在胰臟癌細胞及基因剔除鼠的影響
Characterizes the effects of Klf10/Sei-1 modulation in pancreatic cancer cell and gene-deficient mice
指導教授: 王浩文
Wang, Hao-Wen
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 62
中文關鍵詞: 胰臟
外文關鍵詞: klf10, sei-1, pancreas
相關次數: 點閱:74下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Klf10為Krüppel-like factors家族的成員之一,能夠以其鋅指的結構與基因啟動子結合並扮演一轉錄調控的角色。先前的研究指出,Klf10可以模擬TGF-造成上皮細胞抑制增生與細胞凋亡的現象,顯示其對TGF-訊號傳導有其重要性;利用ChIP-chip探尋可能為Klf10下游相關基因,其中Sei-1為目標基因之一,Klf10可能透過結合在其啟動子而調控其轉錄。已知Sei-1可藉由與CDK4/Cyclin D 和E2f1/DP1的交互作用來調控細胞週期,而異位性表現Sei-1可以活化p21基因係經由p53機制而抑制細胞的生長;除此之外,Sei-1基因剔除鼠其胰島數目顯著有減少的情形。
    本論文首先利用ChIP-chip(Chromatin immunoprecipitation-chip )與ChIP-PCR確認Klf10確實與Sei-1 啟動子上游的Sp1/klf 結合位有交互作用,並陸續以RT-PCR、西方墨點法(Western blot)和啟動子活性分析(promoter activity assay),觀察兩者之關係,結果顯示當在細胞中大量表現Klf10其Sei-1表現量亦隨之增加,其中在啟動子活性分析實驗中經點突變Klf10結合在Sei-1啟動子的位置,能夠使Sei-1啟動子的活性恢復至正常水準,再次顯示Klf10對於促進Sei-1的重要性;另有研究指出,Sei-1對於p53並非影響其轉錄層面,而是藉由穩定其蛋白質而進一步促進p21表現。另一方面,Klf10促進p21表現已知亦非經由p53或結合在其啟動子上。我們進一步在細胞以Klf10與Sei-1 shRNA,RT-PCR實驗進行分析結果顯示Klf10係藉由調控Sei-1表現而影響p21的轉錄。有鑑於Klf10與Sei-1此二基因皆對於胰臟有影響,在實驗中最後利用免疫組織化學染色觀察小鼠胰臟,結果顯示Klf10基因剔除鼠Sei-1表現量較少,且其胰島面積與數目較正常小鼠相對減少,結果有如Sei-1基因剔除鼠。綜觀上述實驗結果,Klf10可能透過調控Sei-1進而影響相關組織的生理功能。

    Klf10 is a group of Krüppel-like transcription factors which generally bind to the promoter of target genes through the zinc-finger structure, and regulate their transcription. Previous study has indicated that increased intracellular levels of Klf10 mimic the anti-proliferative and apoptotic effects of TGF-β1 on epithelial cell growth, suggesting that Klf10 is an important factor for mediating TGF-β1 signaling. From ChIP-chip, which have been adopted to elucidate the novel target genes and signaling cascades of KLF10, Sei-1 is one of the target genes that may be regulated by Klf10 through promoter binding. The Sei-1 is a nuclear factor that implicated in cell cycle regulation through interaction with CDK4/CyclinD and E2F-1/DP-1 complexes. Ectopic expression of Sei-1 protein results in activation of the p21 gene and inhibition of cell growth via p53 mechanism; moreover, its knockout mice show a significant decrease in the amount of pancreatic β-islet.
    In this study, the ChIP-chip and ChIP-PCR were adopted to confirm whether Klf-10 directly binds to the Sp1/Klf binding sites on the upstream of Sei-1 promoter. Moreover, we also conducted RT-PCR, Western blotting, and promoter activity assay to investigate the regulation of Sei-1 by Klf10. Results demonstrated that Klf10 acts as a transcriptional activator on Sei-1 promoter where overexpression of Klf10 induces Sei-1 mRNA and protein expression in cells. After co-transfected with Klf10, Sei-1 promoter activity was significantly increased in which nearest binding site mutation showed loss of promoter activity. Results again suggested an important activating role of Klf10 on Sei-1 promoter. It has been known that Sei-1 is the key factor in cell cycle, it is unlikely to regulate p53 expression at the transcriptional level, and that it up-regulates the p53 activity probably by protein stabilization of p53, which in turn activates the p21 gene. Interestingly, Klf10 has been known as a dose-dependently activated p21 transcription that was independent of p53 and Sp1/Klf binding sites in p21 promoter. We attempted to confirm the presence of p21 using RT-PCR assay and Sei-1 shRNA in synchronized cells, which suggests that Klf10 activates p21 transcription indirectly through regulating the activity of Sei-1 promoter. In light of the influential effect of these two genes on pancreas, we compare the phenotype of pancreas between wild type and Klf10 knockout mice in the end of our study. Immunohistochemistry staining results indicated lower Sei-1 expression level and decreases in the number and amount of β-islet, as in the Sei-1 knockout mice, in our Klf10 knockout mice. Taken together, my experiments conclude that Klf10 up-regulates Sei-1 and thus affects related physiological functions.

    目錄 考試合格證明 I 中文摘要II Abstract III 致謝 V 目錄 VI 圖目錄 VIII 第一章 序論 1 一、Krüppel-like factors 轉錄因子1 二、Sei-1 轉錄因子 4 三、實驗目錄與動機 6 第二章 材料與方法 7 一、細胞培養 7 二、載體的構築(Construction) 10 三、轉染(transfection)質體至細胞 17 四、RNA 抽取 18 五、逆轉錄聚合酶鏈式反應(RT-PCR) 19 六、染色體免疫沉澱晶片分析(Chromatin immunopreciption-chip) 20 七、蛋白質抽取 23 八、蛋白質濃度的定量 24 九、鈉十二烷基硫酸鹽 24 十、西方點墨轉漬法 27 十一、啟動子活性分析(Luciferase assay) 29 十二、Klf10 基因剔除鼠動物模式之建立 30 十三、免疫組織化學染色 36 第三章 實驗結果38 一、分析Klf10 蛋白與其下游基因間的交互關係 38 二、探討Klf10 轉錄因子對於Sei-1 基因之調控 38 三、探討Klf10 與Sei-1 在細胞週期中的變化 40 四、分析Klf10 對Sei-1 的影響是否進一步影響下游p21 的表現 40 五、比較正常小鼠與klf10 基因剔除鼠胰臟Sei-1 基因表現量與β-islet 差異 41 六、比較正常小鼠與klf10 基因剔除鼠胰臟澱粉酶與胰島素表現量差異 41 第四章 討論 42 一、 Klf10 與Sp1 對Sp1/Klf 結合位之競爭關係 42 二、 Klf10 在轉錄作用上扮演一個活化的角色 42 三、 Klf10 和Sei-1 與週期素相關激酶抑制子P21 的關係 43 四、 探討Klf10 基因剔除鼠與Sei-1 基因可能之相關性 44 五、 Klf10 與葡萄糖和胰島素之間的相關性 44 六、 結論 46 參考文獻 47 圖目錄 圖一、分析 Klf10 蛋白與其下游基因間的關係 52 圖二、分析不同劑量Klf10 的處理下,Sei-1 RNA 在胰臟癌細胞株之表現量 53 圖三、分析不同劑量Klf10 的處理下,Sei-1 蛋白質在胰臟癌細胞株之表現量 54 圖四、分析Klf10 對Sei-1 基因之啟動子活性造成的影響 55 圖五、探討Klf10 與Sei-1 在細胞週期中的變化 56 圖六、分析Klf10 上不同的磷酸化位置的突變對於Sei-1 表現量的影響 57 圖七、分析Klf10 與Sei-1 與其下游p21 表現量的關係 58 圖八、分析Klf10 基因剔除鼠基因型與免疫組織化學染色 59 圖九、正常小鼠與Klf10 基因剔除鼠胰臟組織切片比較 60 圖十、正常小鼠與Klf10 基因剔除鼠胰臟組織免疫螢光染色切片比較 61 實驗附錄 62 附錄一 62

    參考文獻
    林峻宇(2011).“Study the correlation between Klf10 deficiency mice and type-2 diabetes mellitus.”國立成功大學碩士論文
    Bailly-Maitre, B., B.F. Belgardt, S.D. Jordan, B. Coornaert, M.J. von Freyend, A. Kleinridders, J. Mauer, M. Cuddy, C.L. Kress, D. Willmes, M. Essig, B. Hampel, U. Protzer, J.C. Reed, and J.C. Bruning. 2010. Hepatic Bax inhibitor-1 inhibits IRE1alpha and protects from obesity-associated insulin resistance and glucose intolerance. The Journal of biological chemistry. 285:6198-6207.
    Barna, G., A. Sebestyen, S. Weischede, I. Petak, R. Mihalik, F. Formelli, and L. Kopper. 2005. Different ways to induce apoptosis by fenretinide and all-trans-retinoic acid in human B lymphoma cells. Anticancer research. 25:4179-4185.
    Bender, H., Z. Wang, N. Schuster, and K. Krieglstein. 2004. TIEG1 facilitates transforming growth factor-beta-mediated apoptosis in the oligodendroglial cell line OLI-neu. Journal of neuroscience research. 75:344-352.
    Bensamoun, S.F., J.R. Hawse, M. Subramaniam, B. Ilharreborde, A. Bassillais, C.L. Benhamou, D.G. Fraser, M.J. Oursler, P.C. Amadio, K.N. An, and T.C. Spelsberg. 2006. TGFbeta inducible early gene-1 knockout mice display defects in bone strength and microarchitecture. Bone. 39:1244-1251.
    Bertram, J.S., and H. Bortkiewicz. 1995. Dietary carotenoids inhibit neoplastic transformation and modulate gene expression in mouse and human cells. The American journal of clinical nutrition. 62:1327S-1336S.
    Black, A.R., J.D. Black, and J. Azizkhan-Clifford. 2001. Sp1 and kruppel-like factor family of transcription factors in cell growth regulation and cancer. Journal of cellular physiology. 188:143-160.
    Chen, G.G., H. Xu, J.F. Lee, M. Subramaniam, K.L. Leung, S.H. Wang, U.P. Chan, and T.C. Spelsberg. 2003. 15-hydroxy-eicosatetraenoic acid arrests growth of colorectal cancer cells via a peroxisome proliferator-activated receptor gamma-dependent pathway. International journal of cancer. Journal international du cancer. 107:837-843.
    Cook, T., B. Gebelein, K. Mesa, A. Mladek, and R. Urrutia. 1998. Molecular cloning and characterization of TIEG2 reveals a new subfamily of transforming growth factor-beta-inducible Sp1-like zinc finger-encoding genes involved in the regulation of cell growth. The Journal of biological chemistry. 273:25929-25936.
    Cook, T., B. Gebelein, and R. Urrutia. 1999. Sp1 and its likes: biochemical and functional predictions for a growing family of zinc finger transcription factors. Annals of the New York Academy of Sciences. 880:94-102.
    Cook, T., and R. Urrutia. 2000. TIEG proteins join the Smads as TGF-beta-regulated transcription factors that control pancreatic cell growth. American journal of physiology. Gastrointestinal and liver physiology. 278:G513-521.
    Dang, D.T., J. Pevsner, and V.W. Yang. 2000. The biology of the mammalian Kruppel-like family of transcription factors. The international journal of biochemistry & cell biology. 32:1103-1121.
    Fernandez-Marcos, P.J., C. Pantoja, A. Gonzalez-Rodriguez, N. Martin, J.M. Flores, A.M. Valverde, E. Hara, and M. Serrano. 2010. Normal proliferation and tumorigenesis but impaired pancreatic function in mice lacking the cell cycle regulator sei1. PloS one. 5:e8744.
    Franke, A.G., C. Gubbe, M. Beier, and N. Duenker. 2006. Transforming growth factor-beta and bone morphogenetic proteins: cooperative players in chick and murine programmed retinal cell death. The Journal of comparative neurology. 495:263-278.
    Hefferan, T.E., G.G. Reinholz, D.J. Rickard, S.A. Johnsen, K.M. Waters, M. Subramaniam, and T.C. Spelsberg. 2000. Overexpression of a nuclear protein, TIEG, mimics transforming growth factor-beta action in human osteoblast cells. The Journal of biological chemistry. 275:20255-20259.
    Hirota, T., N. Kon, T. Itagaki, N. Hoshina, T. Okano, and Y. Fukada. 2010. Transcriptional repressor TIEG1 regulates Bmal1 gene through GC box and controls circadian clockwork. Genes to cells : devoted to molecular & cellular mechanisms. 15:111-121.
    Hong, S.W., C.J. Kim, W.S. Park, J.S. Shin, S.D. Lee, S.G. Ko, S.I. Jung, I.C. Park, S.K. An, W.K. Lee, W.J. Lee, D.H. Jin, and M.S. Lee. 2009. p34SEI-1 inhibits apoptosis through the stabilization of the X-linked inhibitor of apoptosis protein: p34SEI-1 as a novel target for anti-breast cancer strategies. Cancer research. 69:741-746.
    Hong, S.W., J.S. Shin, Y.M. Lee, D.G. Kim, S.Y. Lee, D.H. Yoon, S.Y. Jung, J.J. Hwang, S.J. Lee, D.H. Cho, Y.S. Hong, T.W. Kim, D.H. Jin, and W.K. Lee. 2011. p34 (SEI-1) inhibits ROS-induced cell death through suppression of ASK1. Cancer biology & therapy. 12:421-426.
    Hsu, S.I., C.M. Yang, K.G. Sim, D.M. Hentschel, E. O'Leary, and J.V. Bonventre. 2001. TRIP-Br: a novel family of PHD zinc finger- and bromodomain-interacting proteins that regulate the transcriptional activity of E2F-1/DP-1. The EMBO journal. 20:2273-2285.
    Imataka, H., K. Sogawa, K. Yasumoto, Y. Kikuchi, K. Sasano, A. Kobayashi, M. Hayami, and Y. Fujii-Kuriyama. 1992. Two regulatory proteins that bind to the basic transcription element (BTE), a GC box sequence in the promoter region of the rat P-4501A1 gene. The EMBO journal. 11:3663-3671.
    Kaczynski, J., T. Cook, and R. Urrutia. 2003. Sp1- and Kruppel-like transcription factors. Genome biology. 4:206.
    Kamimura, A., M. Kamachi, J. Nishihira, S. Ogura, H. Isobe, H. Dosaka-Akita, A. Ogata, M. Shindoh, T. Ohbuchi, and Y. Kawakami. 2000. Intracellular distribution of macrophage migration inhibitory factor predicts the prognosis of patients with adenocarcinoma of the lung. Cancer. 89:334-341.
    Kim, J., S. Shin, M. Subramaniam, E. Bruinsma, T.D. Kim, J.R. Hawse, T.C. Spelsberg, and R. Janknecht. 2010. Histone demethylase JARID1B/KDM5B is a corepressor of TIEG1/KLF10. Biochemical and biophysical research communications. 401:412-416.
    Kobori, N., G.L. Clifton, and P. Dash. 2002. Altered expression of novel genes in the cerebral cortex following experimental brain injury. Brain research. Molecular brain research. 104:148-158.
    Kushner, J.A., M.A. Ciemerych, E. Sicinska, L.M. Wartschow, M. Teta, S.Y. Long, P. Sicinski, and M.F. White. 2005. Cyclins D2 and D1 are essential for postnatal pancreatic beta-cell growth. Molecular and cellular biology. 25:3752-3762.
    Li, F.X., J.W. Zhu, J.S. Tessem, J. Beilke, M. Varella-Garcia, J. Jensen, C.J. Hogan, and J. DeGregori. 2003. The development of diabetes in E2f1/E2f2 mutant mice reveals important roles for bone marrow-derived cells in preventing islet cell loss. Proceedings of the National Academy of Sciences of the United States of America. 100:12935-12940.
    Li, J., P. Muscarella, S.H. Joo, T.J. Knobloch, W.S. Melvin, C.M. Weghorst, and M.D. Tsai. 2005. Dissection of CDK4-binding and transactivation activities of p34(SEI-1) and comparison between functions of p34(SEI-1) and p16(INK4A). Biochemistry. 44:13246-13256.
    Lomberk, G., and R. Urrutia. 2005. The family feud: turning off Sp1 by Sp1-like KLF proteins. The Biochemical journal. 392:1-11.
    Luo, X., L. Ding, J. Xu, and N. Chegini. 2005. Gene expression profiling of leiomyoma and myometrial smooth muscle cells in response to transforming growth factor-beta. Endocrinology. 146:1097-1118.
    Mitsumoto, M., A. Mitsumoto, and B. Demple. 2003. Nitric oxide-mediated upregulation of the TGF-beta-inducible early response gene-1 (TIEG1) in human fibroblasts by mRNA stabilization independent of TGF-beta. Free radical biology & medicine. 34:1607-1613.
    Noti, J.D., A.K. Johnson, and J.D. Dillon. 2004. The zinc finger transcription factor transforming growth factor beta-inducible early gene-1 confers myeloid-specific activation of the leukocyte integrin CD11d promoter. The Journal of biological chemistry. 279:26948-26958.
    Noti, J.D., A.K. Johnson, and J.D. Dillon. 2005. The leukocyte integrin gene CD11d is repressed by gut-enriched Kruppel-like factor 4 in myeloid cells. The Journal of biological chemistry. 280:3449-3457.
    Rajamannan, N.M., M. Subramaniam, T.P. Abraham, V.C. Vasile, M.J. Ackerman, D.G. Monroe, T.L. Chew, and T.C. Spelsberg. 2007. TGFbeta inducible early gene-1 (TIEG1) and cardiac hypertrophy: Discovery and characterization of a novel signaling pathway. Journal of cellular biochemistry. 100:315-325.
    Rane, S.G., P. Dubus, R.V. Mettus, E.J. Galbreath, G. Boden, E.P. Reddy, and M. Barbacid. 1999. Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in beta-islet cell hyperplasia. Nature genetics. 22:44-52.
    Reinholz, M.M., M.W. An, S.A. Johnsen, M. Subramaniam, V.J. Suman, J.N. Ingle, P.C. Roche, and T.C. Spelsberg. 2004. Differential gene expression of TGF beta inducible early gene (TIEG), Smad7, Smad2 and Bard1 in normal and malignant breast tissue. Breast cancer research and treatment. 86:75-88.
    Ribeiro, A., S.F. Bronk, P.J. Roberts, R. Urrutia, and G.J. Gores. 1999. The transforming growth factor beta(1)-inducible transcription factor TIEG1, mediates apoptosis through oxidative stress. Hepatology (Baltimore, Md.). 30:1490-1497.
    Ruminy, P., P. Rouet, and J.P. Salier. 2003. An interplay of Sp1, GKLF and CREB-2 controls human Pre-alpha-Inhibitor gene (ITIH3) transcription. Gene. 315:133-144.
    Sanchez-Gongora, E., C. Lisbona, R. de Gregorio, A. Ballester, V. Calvo, L. Perez-Jurado, and S. Alemany. 2000. COT kinase proto-oncogene expression in T cells: implication of the JNK/SAPK signal transduction pathway in COT promoter activation. The Journal of biological chemistry. 275:31379-31386.
    Siatecka, M., and J.J. Bieker. 2011. The multifunctional role of EKLF/KLF1 during erythropoiesis. Blood. 118:2044-2054.
    Song, K.D., D.J. Kim, J.E. Lee, C.H. Yun, and W.K. Lee. 2012. KLF10, transforming growth factor-beta-inducible early gene 1, acts as a tumor suppressor. Biochemical and biophysical research communications. 419:388-394.
    Subramaniam, M., S.A. Harris, M.J. Oursler, K. Rasmussen, B.L. Riggs, and T.C. Spelsberg. 1995. Identification of a novel TGF-beta-regulated gene encoding a putative zinc finger protein in human osteoblasts. Nucleic acids research. 23:4907-4912.
    Subramaniam, M., J.R. Hawse, S.A. Johnsen, and T.C. Spelsberg. 2007. Role of TIEG1 in biological processes and disease states. Journal of cellular biochemistry. 102:539-548.
    Subramaniam, M., J.R. Hawse, N.M. Rajamannan, J.N. Ingle, and T.C. Spelsberg. 2010. Functional role of KLF10 in multiple disease processes. BioFactors (Oxford, England). 36:8-18.
    Sugimoto, M., T. Nakamura, N. Ohtani, L. Hampson, I.N. Hampson, A. Shimamoto, Y. Furuichi, K. Okumura, S. Niwa, Y. Taya, and E. Hara. 1999. Regulation of CDK4 activity by a novel CDK4-binding protein, p34(SEI-1). Genes & development. 13:3027-3033.
    Suske, G., E. Bruford, and S. Philipsen. 2005. Mammalian SP/KLF transcription factors: bring in the family. Genomics. 85:551-556.
    Tang, D.J., L. Hu, D. Xie, Q.L. Wu, Y. Fang, Y. Zeng, J.S. Sham, and X.Y. Guan. 2005. Oncogenic transformation by SEI-1 is associated with chromosomal instability. Cancer research. 65:6504-6508.
    Tengholm, A., B. Hellman, and E. Gylfe. 1999. Glucose regulation of free Ca(2+) in the endoplasmic reticulum of mouse pancreatic beta cells. The Journal of biological chemistry. 274:36883-36890.
    Watanabe-Fukunaga, R., S. Iida, Y. Shimizu, S. Nagata, and R. Fukunaga. 2005. SEI family of nuclear factors regulates p53-dependent transcriptional activation. Genes to cells : devoted to molecular & cellular mechanisms. 10:851-860.
    White, E.S., K.R. Flaherty, S. Carskadon, A. Brant, M.D. Iannettoni, J. Yee, M.B. Orringer, and D.A. Arenberg. 2003. Macrophage migration inhibitory factor and CXC chemokine expression in non-small cell lung cancer: role in angiogenesis and prognosis. Clinical cancer research : an official journal of the American Association for Cancer Research. 9:853-860.
    Worley, J.F., 3rd, M.S. McIntyre, B. Spencer, and I.D. Dukes. 1994. Depletion of intracellular Ca2+ stores activates a maitotoxin-sensitive nonselective cationic current in beta-cells. The Journal of biological chemistry. 269:32055-32058.
    Yang, D.H., C.F. Hsu, C.Y. Lin, J.Y. Guo, W.C. Yu, and V.H. Chang. 2013. Kruppel-like factor 10 upregulates the expression of cyclooxygenase 1 and further modulates angiogenesis in endothelial cell and platelet aggregation in gene-deficient mice. The international journal of biochemistry & cell biology. 45:419-428.


    無法下載圖示 校內:2018-08-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE