簡易檢索 / 詳目顯示

研究生: 吳丞弘
Wu, Chen-Hung
論文名稱: 利用雙眼立體視覺之人形機器人以影像為基礎之手眼行為協調控制
Behavioristic Image-Based Hand-Eye Coordination of Humanoid Robots Using Binocular Stereo Vision
指導教授: 蔡清元
Tsay, Tsing-Iuan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 78
中文關鍵詞: 人形機器人視覺導引影像為基礎物件搬運
外文關鍵詞: Humanoid Robot, Vision-Guided, Image-Based, Pick-and-Place
相關次數: 點閱:133下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近十年來,機器人領域技術的進步已將各種服務型機器人帶至人類的日常生活中。現今,人們對於人形機器人之需求日以俱增。本研究之主要目標為提出一視覺導引控制策略,並透過雙眼立體視覺系統使人形機器人從事物件抓取的任務。首先將抓取任務分成幾個基本行為,其中在視覺環境下的行為乃利用一影像為基礎看而後動之控制策略控制機械手臂調整其姿態,藉由結合這些基本行為並依序地執行,使機器人完成抓取任務。最後,利用將目標物置於工作平台上數個不同的位置,並控制機器人左手掌逼近以抓取目標物的實驗,可評估手臂的定位性能。實驗結果顯示,本研究所提出行為模式下以影像為基礎之看而後動的視覺導引控制策略,可使人形機器人完成物件搬運的任務。

    Over the last decades, progress in the robot technology has brought various functional robots to human’s daily life. Recently demand for humanoid robots is increasing. The objective of this thesis is to propose a vision-guided control strategy for a humanoid robot to perform a grasping task using binocular stereo vision. The grasping task is first decomposed into some basic behaviors. In the vision-based behaviors, an image-based look-and-move control strategy is presented for the robotic hand to adjust its pose. These behaviors are then combined and executed in turn to perform grasping tasks. Finally, the positioning performance of the humanoid robot is experimentally evaluated by controlling the robotic left hand to approach and grasp a workpiece in various locations on a table. Experimental results reveal that the proposed vision-guided control strategy with a behavioristic image-based look-and-move structure ensures the humanoid robot can perform pick-and-place operations.

    中文摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vii 表目錄 ix 符號說明 x 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 1 1.3 研究動機與目的 4 1.4 本文貢獻 5 1.5 本文架構 5 第二章 機器人之硬體介紹與分析 6 2.1 機器人之機構介紹 6   2.1.1 機械頭之機構介紹 7 2.1.2 機械手臂之機構介紹 9 2.1.3 機械手掌之機構介紹 13 2.2 機器人之控制系統 14 2.2.1 視覺系統 14 2.2.2 影像擷取卡 16 2.2.3 機器人系統之硬體控制架構 16 2.3 機器人之座標系統 18 2.4 機器人之幾何運動學 19 2.4.1 機械手臂之順向運動學 19 2.4.2 機械手臂之逆向運動學 25 2.5 機器人頭部之座標轉換 26 第三章 影像處理與攝影機校正 31 3.1 影像處理 31 3.1.1 影像前處理 31 3.1.2 計算影像重心 33 3.1.3 四邊形邊緣化與角落判定 34 3.2 攝影機幾何模型 39 3.3 攝影機校正 41 3.3.1 參數表示(Notation) 42 3.3.2 估測Homography 42 3.3.3 解得內部參數 43 3.3.4 徑向失真(Radial Distortion) 45 第四章 機器人之手眼協調抓取控制 47 4.1 基於行為模式之動作規劃 47 4.2 機械手臂之視覺伺服控制策略 49 4.2.1 影像轉換矩陣推導 49 4.2.2 視覺回授控制命令與系統穩定性 52 4.3 機械手臂之視覺伺服參考點規劃 54 第五章 實驗 60 5.1 實驗設置 60 5.2 實際攝影機校正 62 5.3 機械手臂直線運動實驗 64 5.5 定位性能評估 67 5.5 機械手臂物件抓取實驗 71 第六章 結論與未來發展 74 6.1 結論 74 6.2 未來展望 74 參考文獻 75

    【1】 Ronald C. Arkin, Behavior-based Robotics . MIT Press, 1998.
    【2】 R. A. Brooks, “A robust layered control system for a mobile robot,” IEEE Journal of Robotics and Automation, vol. 2, no.7, pp.14-23, 1986.
    【3】 J. L. Jones and A. M. Flynn, Mobile robots: Inspiration to implementation. A K Peters, Wellesley, MA, 1993.
    【4】 A. S. Sekmen, V. K. Homba, and S. Zein-Sabatto, “A fuzzy integrated robotic behavioral architecture,“ Proceedings of Southeastcon.2000, pp. 52 –55.
    【5】 M. Carreras, J. Batlle, and P. Ridao, “Hybrid coordination of reinforcement learning-based behaviors for AUV control,“ Proceedings of IEEE Intelligent Robots and Systems, vol. 3,pp. 1410 -1415,2001.
    【6】 K. Goldberg and B. Chen, “Collaborative control of robot motion: robustness to error,“ Proceedings of IEEE Intelligent Robots and Systems, vol. 2, pp. 655 –660, 2001.
    【7】 A. Abreu and L. Correia, “A fuzzy behavior-based architecture for decision control in autonomous vehicles,“ Proceedings of IEEE Intelligent Control, the 2001 International Symposium, pp. 370 -375.
    【8】 K. Izumi, K. Watanabe, and T. Miyazaki, “Fuzzy behavior-based control for a miniature mobile robot,“ Proceedings of 1998 Second International Conference on Knowledge-Based Intelligent Electronic System, pp. 483 -490.
    【9】 A. Anglani, F. Taurisano, R. De Giuseppe, and C. Distante, “Learning to Grasp by using Visual Information,” Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation, pp.7-14, Nov. 1999.
    【10】 A. C. Sanderson and L. E. Weiss, “Image-Based Visual Servo Control Using Relational Graph Error Signals,” Proceeding of IEEE International Conference on Cybernetics and Society, pp. 1074-1077, 1980.
    【11】 A. Schrott, “Feature-Based Camera-Guided Grasping by an Eye-in-Hand Robot,” Proceedings of the IEEE International Conference on Robotics and Automation, pp.1832-1837, May 1992.
    【12】 Y. Ting, Y. H. Chen, M. Lin, S. C. Dai, and Y. Kang, “A Study on the Inaccuracy of Vision Systems of Mobile Robots Causing the Failure of Pick-and-Place Tasks,” Proceedings of the Florida Conference on Recent Advances in Robotics, pp.43-46, Apr. 1997.
    【13】 R. Kelly, R. Carelli, O. Nasisi, B. Kuchen, and F. Reyes, “Stable Visual Servoing of Camera-in-Hand Robotics Systems,” IEEE/ASME Transactions on Mechatronics, Vol. 5, No. 1, pp39-48, Mar. 2000.
    【14】 F. Chaumette, “Potential Problems of Stability and Convergence in Image-Based and Position-Based Visual Servoing,” Lecture Notes in Control and Information Sciences, Vol.237, pp. 66-78, 1998.
    【15】 S. Hutchinson, G. D. Hager, and P. I. Corke, “A Tutorial on Visual Servo Control,” IEEE Transactions on Robotics and Automation, Vol. 12, No. 5, pp. 651-670, 1996.
    【16】 張文中、張文城,”Direct Visual Servoing with Image-Based Task Encoding,” 控制與自動化組論文集,中國機械工程學會第十六屆全國學術研討會,Dec. 1999.
    【17】 W. Khalil and J. F. Kleinfinger, “A New Geometric Notation for Open and Closed Loop Robots,” Proceedings of IEEE International Conference on Robotics and Automation, pp. 1174-1180, 1986.
    【18】 S. M. Huang, Vision-Guided Material Handling of Humanoid Robots with a Compound-like Eye, Master Thesis, Department of Mechanical Engineering, National Cheng Kung University, R.O.C., July 2012.
    【19】 C. H. Lai, Development of a Humanoid Robot and Its Self-Learning Control for Robotic Table Tennis, PhD Thesis, Department of Mechanical Engineering, Nation Cheng Kung University, R.O.C., July 2010.
    【20】 Z. Zhang, “A Flexible New Technique for Camera Calibration,” IEEE Transactions on Pattern Analysis and Mechanical Intelligence, vol. 22(11), pp. 1330-1334, 2000.
    【21】 G. D. Hanger, W. C. Chang, and A. S. Morse, ”Robot Hand-Eye Coordination Based on Stereo Vision,” IEEE Control System Magazine, vol. 15, pp. 30-39, 1995.
    【22】 Z. Wasik and A. Saffiotti, “A Fuzzy Behavior-Based Control System for Manipulation,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.1596-1601, Oct. 2002.
    【23】 Z. Wasik and A. Saffiotti, “A Hierarchical Behavior-Based Approach to Manipulation Tasks,” Proceedings of the IEEE International Conference on Robots and Automation, pp.2780-2785, Set. 2003.
    【24】 R. S. Lin, Development of a Mobile Robot for Vision Guided Material Handling, Master Thesis, Department of Mechanical Engineering, National Cheng Kung University, R. O. C., 2001.
    【25】 F. Chaumette and Y. Mezouar, “Path Planning in Image Space for Robust Visual Servoing,” Proceeding of IEEE Conference on Robotics and Automation, Vol. 3, pp. 2759-2764, 2000.
    【26】 C. H. Lai, Design and Control of an Anthropomorphic Robot, Master Thesis, Department of Mechanical Engineering, Nation Cheng Kung University, R.O.C., July 2003.
    【27】 Y. F. Lai, Behavior-Based Pose Control of Robot Manipulators with an Uncalibrated Eye-in-Hand Vision System, Master Thesis, Department of Mechanical Engineering, Nation Cheng Kung University, R.O.C., July 2005.
    【28】 E. D. Orin and W. W. Schrader, “Efficient Computation of the Jacobian for Robot Manipulator,” International Journal of Robotics Research, vol. 3, no. 4, pp. 66-75, 1984.
    【29】 J. K. Waldron, W. S. Liang and S. J. Bolin, “A Study of the Jacobian Matrix of Serial Manipulator,” Journal of Mechanisms, Transmissions, and Automation in Design vol. 107, pp. 230-238, June, 1985.
    【30】 Y. X. Huang, Behavior-Based Home Robot Navigation Design, Master Thesis, Department of Mechanical Engineering, Nation Chiao Tung University, R.O.C., July 2005.

    下載圖示 校內:2023-08-15公開
    校外:2023-08-15公開
    QR CODE