簡易檢索 / 詳目顯示

研究生: 陳映均
Chen, Ying-Chun
論文名稱: 小青龍湯對屋塵螨誘發過敏發炎反應中toll相似受器-4之影響
In vitro effect of Xiao-Qing-Long-Tang on the Toll-like Receptor 4 in House Dust Mite Induced Reaction
指導教授: 王浩文
Wang, Hao-Ven
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 75
中文關鍵詞: 屋塵螨小青龍湯TLR4
外文關鍵詞: Der p, Toll-like receptor 4, Xiao-Qing-Long-Tang
相關次數: 點閱:133下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氣喘在病理上是慢性呼吸道發炎及阻塞之疾病,病徵為呼吸道過度收縮而導致呼吸困難及咳嗽等症狀,嚴重時足以致命。氣喘是全球性疾病,兒童盛行率近年來更是有逐年漸增之勢,其中又以過敏性氣喘最為常見。當患者受到塵螨或花粉等過敏原刺激誘發過敏反應,導致氣喘發作。屋塵螨(house dust mite)是常見之過敏原,臨床上主要種類為歐洲屋塵螨(Dermatophagoids pteronyssinus, Der p)。
    小青龍湯(Xiao-Qing-Long-Tang, XQLT)是中藥成方,由八種單味中藥組成,分別為麻黃、桂枝、芍藥、炙甘草、乾薑、細辛、五味子及半夏,主要用於治療喘、咳、痰多等症狀,臨床用於對於西醫診斷為氣喘之患者可見一定療效。許多研究指出,在以各種過敏原誘導之急、慢性過敏氣喘模式中,證實XQLT確實對過敏及氣喘症狀具有一定抑制效果。在以Der p誘發急性過敏氣喘動物模式中,研究發現餵食XQLT後,小鼠肺部組織之toll相似受器(toll-like receptor 4, TLR4)之表現量降低,細胞株研究進一步發現,XQLT抑制TLR4受Der p刺激的效果會被游離態之TLR4重組蛋白(recombinant soluble TLR4, sTLR4)所反轉,可見XQLT所抑制之過敏反應與TLR4的免疫訊號路徑有關。TLR4屬於TLR蛋白質家族之一員,也是重要的病原體辨識受器(pathogen recognition receptors, PRR),主要已知受體為lipopolysaccharide (LPS)。而近年也有研究發現Der p 2在結構上與TLR4複合體成員之一的骨髓分化蛋白2(myeloid differentiation protein-2, MD-2)相近,能直接與TLR4結合而誘發下游訊息傳遞。本研究即再進一步由不同細胞株確認XQLT是否確實影響Der p誘發TLR4的訊號,欲藉由sTLR4來分離XQLT所含有之可能參與影響TLR4訊號路徑的成分。
    本研究目前發現,以Der p對細胞刺激後,XQLT確實能影響細胞膜上與TLR4專一性結合的TRIF-related adaptor molecule (TRAM)表現量減少。藉此,可望於將來分離出XQLT中、相關的活性成分。

    Asthma is a worldwide disease with symptoms as airway hypercontraction, wheezing and chronic cough and is featured with chronic airway inflammation and obstruction. Increasing prevalence rate of asthma in children is observed in many countries. Allergic asthma is the most popular disease among those asthmatic patients. Patients are over-reacts to foreign allergen such as dust mite or pollen then subjected to asthma attack. House dust mite (HDM) is the most seen allergen. The main source is from Dermatophagoids pteronyssinus (Der p). Xiao-Qing-Long-Tang (XQLT) is a used traditional Chinese medical which treat symptom such as wheezing, cough and sputum. XOTL is proved to be an inhibitory agent against allergic inflammation and wheezing in several allergens, including Der p, induced acute or chronic allergic asthma animal models. It is found oral-fed with XQLT can down regulate toll-like receptor 4 (TLR4) expression in lungs of a Der p induced allergic mice model. In vitro study shows that inhibitory effect of XQLT on TLR4 will be reversed by recombinant soluble TLR4 (sTLR4). It seems that XQLT may exert inhibitory effect on allergic reaction by affecting TLR4 pathway. This project is designed to confirm the inhibitory effect of XQLT on Der p induced TLR4 signal and to isolate possible effector of XQLT by using sTLR4. In this research, XQLT is found to decrease the membranous TRIF-related adaptor molecule (TRAM) which binds to TLR4 specifically in a Der p stimulated cell line. The result will be subsequently applied to isolate TLR4-regulating effector of XQLT.

    摘要 I 誌謝 V 目錄 VI 圖目錄 IX 附錄 X 1. 文獻回顧 1 1.1 過敏性氣喘之發炎機制 1 1.2 屋塵螨(House Dust Mite, HDM)過敏原 4 1.3 Toll相似受器4 (Toll-like receptor 4, TLR4) 10 1.4 傳統中醫藥劑複方小青龍湯 16 1.5 研究動機與目的 19 2. 實驗材料與方法 20 2.1 實驗材料 20 2.1.1 細胞株 20 2.1.2 實驗樣品 20 2.1.3實驗藥品及分子生物相關套組 20 2.1.4 實驗儀器 23 2.2 實驗方法 23 2.2.1 屋塵螨Dermatophagoids pteronyssinus (Der p)萃取液製備 23 2.2.2 小青龍湯(XQLT)萃取液製備 24 2.2.3 細胞解凍、繼代培養、細胞計數與顯微鏡觀察型態 24 2.2.4 細胞存活率試驗(MTT assay) 25 2.2.5免疫螢光染色(Immunofluorescence staining) 25 2.2.6 酵素免疫分析法(Enzyme-Linked ImmunoSorbent Assay, ELISA) 26 2.2.7 RNA萃取及即時聚合酶連鎖反應 (Real-time PCR) 27 2.2.8 膜蛋白萃取及蛋白質定量 28 2.2.9西方墨點法(Western blotting) 29 2.2.10 統計方法 30 3. 結果 31 3.1 Der p對A549存活率及細胞數目之影響 31 3.3 Der p誘發A549產生細胞激素IL-6及IL-8 35 3.4 C34及蛋白酶抑制劑對於Der p誘發之IL-6、IL-8及細胞型態之影響 37 3.6 Der p對A549膜蛋白中TLR4及TRAM不同時間點之影響 43 3.7 XQLT對A549存活率之影響 44 3.8 XQLT對A549細胞型態之影響 45 3.9 XQLT對A549產生IL-8及IL-6之影響 47 3.10 XQLT對A549膜蛋白中TLR4及TRAM表現量之影響 49 4. 討論 51 4.1 Der p及其中蛋白酶對A549細胞數目及型態之影響 51 4.2 Der p及其中蛋白酶對A549產生IL-8及IL-6之影響 52 4.3 Der p對A549細胞激素之基因表現量影響 53 4.4 Der p及C34對A549細胞膜中TLR4及TRAM之影響 54 4.5 XQLT對A549存活率及細胞型態之影響 55 4.6 XQLT對A549產生IL-8及IL-6之影響 55 4.7 XQLT對A549細胞膜中TLR4及TRAM之影響 56 5. 結論 57 參考文獻 58

    王威鈞。Der p 2和IL-6影響呼吸道上皮細胞機制之研究。中山醫學大學生化暨生物科技研究所博士學位論文。民101。
    張仁旭。小青龍湯對急性致敏氣喘小鼠模型中的神經營養因子與其受器的調控。中國醫藥大學中醫學系博士學位論文。民102。
    蔡維東。丙型干擾素、第一型干擾素調控因子及白三烯C4合成酶之基因多型性於氣喘病童所扮演之角色。國立成功大學分子醫學研究所學位論文。民92。
    Abate, W., Alghaithy, A. A., Parton, J., Jones, K. P., & Jackson, S. K. Surfactant lipids regulate LPS-induced interleukin-8 production in A549 lung epithelial cells by inhibiting translocation of TLR4 into lipid raft domains. J Lipid Res, 51(2), 334-344. (2010).
    Akira, S., Takeda, K., & Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol, 2(8), 675-680. (2001).
    Alexopoulou, L., Holt, A. C., Medzhitov, R., & Flavell, R. A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature, 413(6857), 732-738. (2001).
    Alexopoulou, L., Thomas, V., Schnare, M., Lobet, Y., Anguita, J., Schoen, R. T., Medzhitov, R., Fikrig, E., & Flavell, R. A. Hyporesponsiveness to vaccination with Borrelia burgdorferi OspA in humans and in TLR1- and TLR2-deficient mice. Nat Med, 8(8), 878-884. (2002).
    Angkasekwinai, P., Park, H., Wang, Y. H., Wang, Y. H., Chang, S. H., Corry, D. B., Liu, Y. J., Zhu, Z., & Dong, C. Interleukin 25 promotes the initiation of proallergic type 2 responses. J Exp Med, 204(7), 1509-1517. (2007).
    Awasthi, S. Toll-like receptor-4 modulation for cancer immunotherapy. Front Immunol, 5, 328. (2014).
    Calderon, M. A., Linneberg, A., Kleine-Tebbe, J., De Blay, F., Hernandez Fernandez de Rojas, D., Virchow, J. C., & Demoly, P. Respiratory allergy caused by house dust mites: What do we really know? J Allergy Clin Immunol, 136(1), 38-48. (2015).
    Chang, R. S., Wang, S. D., Wang, Y. C., Lin, L. J., Kao, S. T., & Wang, J. Y. Xiao-Qing-Long-Tang shows preventive effect of asthma in an allergic asthma mouse model through neurotrophin regulation. Bmc Complementary and Alternative Medicine, 13, 220. (2013).
    Chang, R. S., Wang, Y. C., & Kao, S. T. Soluble toll-like receptor 4 reversed attenuating effect of Chinese herbal Xiao-Qing-Long-Tang on allergen induced nerve growth factor and thymic stromal lymphopoietin. Exp Ther Med, 6(5), 1199-1207. (2013).
    Chen, F. P., Chen, T. J., Kung, Y. Y., Chen, Y. C., Chou, L. F., Chen, F. J., & Hwang, S. J. Use frequency of traditional Chinese medicine in Taiwan. BMC Health Serv Res, 7, 26. (2007).
    Chen, H. Y., Lin, Y. H., Thien, P. F., Chang, S. C., Chen, Y. C., Lo, S. S., Yang, S. H., & Chen, J. L. Identifying core herbal treatments for children with asthma: implication from a chinese herbal medicine database in taiwan. Evid Based Complement Alternat Med, Article ID 125943, 10 pages. (2013).
    Choi, S. Encyclopedia of Signaling Molecules. Springer Science Business Media, LLC. New York. 1866-1875. (2012).
    Cohn, L., Homer, R. J., Niu, N., & Bottomly, K. T helper 1 cells and interferon gamma regulate allergic airway inflammation and mucus production. J Exp Med, 190(9), 1309-1318. (1999).
    Colantonio, A. D., Epeldegui, M., Jesiak, M., Jachimowski, L., Blom, B., & Uittenbogaart, C. H.. IFN-alpha is constitutively expressed in the human thymus, but not in peripheral lymphoid organs. PLoS One, 6(8), e24252. (2011)
    Dullaers, M., De Bruyne, R., Ramadani, F., Gould, H. J., Gevaert, P., & Lambrecht, B. N. The who, where, and when of IgE in allergic airway disease. J Allergy Clin Immunol, 129(3), 635-645. (2012).
    Erle, D. J., & Sheppard, D. The cell biology of asthma. J Cell Biol, 205(5), 621-631. (2014).
    Furmonaviciene, R., Ghaemmaghami, A. M., Boyd, S. E., Jones, N. S., Bailey, K., Willis, A. C., Sewell, H. F., Mitchell, D. A., & Shakib, F. The protease allergen Der p 1 cleaves cell surface DC-SIGN and DC-SIGNR: experimental analysis of in silico substrate identification and implications in allergic responses. Clin Exp Allergy, 37(2), 231-242. (2007).
    Guo, P. F., Du, M. R., Wu, H. X., Lin, Y., Jin, L. P., & Li, D. J. Thymic stromal lymphopoietin from trophoblasts induces dendritic cell-mediated regulatory TH2 bias in the decidua during early gestation in humans. Blood, 116(12), 2061-2069. (2010).
    Hammad, H., Chieppa, M., Perros, F., Willart, M. A., Germain, R. N., & Lambrecht, B. N. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat Med, 15(4), 410-416. (2009).
    Holgate, S. T. Innate and adaptive immune responses in asthma. Nat Med, 18(5), 673-683. (2012).
    Holgate, S. T., & Polosa, R. Treatment strategies for allergy and asthma. Nat Rev Immunol, 8(3), 218-230. (2008).
    Hoshino, K., Takeuchi, O., Kawai, T., Sanjo, H., Ogawa, T., Takeda, Y., Takeda, K., & Akira, S. Cutting Edge: Toll-Like Receptor 4 (TLR4)-Deficient Mice Are Hyporesponsive to Lipopolysaccharide: Evidence for TLR4 as the Lps Gene Product. J Immunol, 162(7), 3749-3752. (1999).
    Jacquet, A. The role of innate immunity activation in house dust mite allergy. Trends Mol Med, 17(10), 604-611. (2011).
    Jacquet, A. Innate immune responses in house dust mite allergy. ISRN Allergy, Article ID 735031, 18 pages. (2013).
    Kalsheker, N. A., Deam, S., Chambers, L., Sreedharan, S., Brocklehurst, K., & Lomas, D. A. The House Dust Mite Allergen Der p1 Catalytically Inactivates a1-Antitrypsin by Specific Reactive Centre Loop Cleavage: A Mechanism That Promotes Airway Inflammation and Asthma. Biochem Biophys Res Commun, 221(1), 59-61. (1996).
    Kao, S. T., Wang, S. D., Wang, J. Y., Yu, C. K., & Lei, H. Y. The effect of Chinese herbal medicine, xiao-qing-long tang (XQLT), on allergen-induced bronchial in¯ammation in mite-sensitized mice. Allergy, 55(12), 1127-1133. (2000).
    Kauffman, H. F., Tamm, M., Timmerman, J. A., & Borger, P. House dust mite major allergens Der p 1 and Der p 5 activate human airway-derived epithelial cells by protease-dependent and protease-independent mechanisms. Clin Mol Allergy, 4, 5. (2006).
    Kawai, T., Takeuchi, O., Fujita, T., Inoue, J. i., Muhlradt, P. F., Sato, S., Hoshino, K., & Akira, S. Lipopolysaccharide Stimulates the MyD88-Independent Pathway and Results in Activation of IFN-Regulatory Factor 3 and the Expression of a Subset of Lipopolysaccharide-Inducible Genes. J Immunol, 167(10), 5887-5894. (2001).
    Keller, C., Keller, P., Marshal, S., & Pedersen, B. K. IL-6 gene expression in human adipose tissue in response to exercise--effect of carbohydrate ingestion. J Physiol, 550(Pt 3), 927-931. (2003).
    Kim, H. Y., DeKruyff, R. H., & Umetsu, D. T. The many paths to asthma: phenotype shaped by innate and adaptive immunity. Nat Immunol, 11(7), 577-584. (2010).
    Kim, J., Natarajan, S., Bae, H., Jung, S. K., Cruikshank, W., & Remick, D. G. Herbal medicine treatment reduces inflammation in a murine model of cockroach allergen-induced asthma. Ann Allergy Asthma Immunol, 107(2), 154-162. (2011).
    King, C., Brennan, S., Thompson, P. J., & Stewart, G. A. Dust Mite Proteolytic Allergens Induce Cytokine Release from Cultured Airway Epithelium. J Immunol, 161(7), 3645-3651. (1998).
    Ko, E., Rho, S., Cho, C., Choi, H., Ko, S., Lee, Y., Hong, M. C., Shin, M. K., Jung, S. G., & Bae, H. So-Cheong-Ryong-Tang, tradititional Korean medicine, suppresses Th2 lineage development. Biol Pharm Bull, 27(5), 739-743. (2004).
    Ko, E., Rho, S., Lee, E. J., Seo, Y. H., Cho, C., Lee, Y., Min, B. I., Shin, M. K., Hong, M. C., & Bae, H. Traditional Korean medicine (SCRT) modulate Th1/Th2 specific cytokine production in mice CD4+ T cell. J Ethnopharmacol, 92(1), 121-128. (2004).
    Krishnan, J., Selvarajoo, K., Tsuchiya, M., Lee, G., & Choi, S. Toll-like receptor signal transduction. Exp Mol Med, 39(4), 421-438. (2007).
    Kung, Y. Y., Chen, Y. C., Hwang, S. J., Chen, T. J., & Chen, F. P. The prescriptions frequencies and patterns of Chinese herbal medicine for allergic rhinitis in Taiwan. Allergy, 61(11), 1316-1318. (2006).
    Lee, A. J., Cho, K. J., & Kim, J. H. MyD88-BLT2-dependent cascade contributes to LPS-induced interleukin-6 production in mouse macrophage. Exp Mol Med, 47, e156. (2015).
    Li, X. M., & Brown, L. Efficacy and mechanisms of action of traditional Chinese medicines for treating asthma and allergy. J Allergy Clin Immunol, 123(2), 297-306. (2009).
    Lien, E., Sellati, T. J., Yoshimura, A., Flo, T. H., Rawadi, G., Finberg, R. W., Carroll, J. D., Espevik, T., Ingalls, R. R., Radolf, J. D., & Golenbock, D. T. Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. J Biol Chem, 274(47), 33419-33425. (1999).
    Liravi, B., Piedrafita, D., Nguyen, G., & Bischof, R. J. Dynamics of IL-4 and IL-13 expression in the airways of sheep following allergen challenge. BMC Pulm Med, 15, 101. (2015).
    Locksley, R. M. Asthma and allergic inflammation. Cell, 140(6), 777-783. (2010).
    Maeshima, N., & Fernandez, R. C. Recognition of lipid A variants by the TLR4-MD-2 receptor complex. Front Cell Infect Microbiol, 3, 3. (2013).
    McGettrick, A. F., Brint, E. K., Palsson-McDermott, E. M., Rowe, D. C., Golenbock, D. T., Gay, N. J., Fitzgerald, K. A., & O'Neill, L. A. Trif-related adapter molecule is phosphorylated by PKC{epsilon} during Toll-like receptor 4 signaling. Proc Natl Acad Sci U S A, 103(24), 9196-9201. (2006).
    Millar, N. L., Gilchrist, D. S., Akbar, M., Reilly, J. H., Kerr, S. C., Campbell, A. L., Murrell, G. A., Liew, F. Y., Kurowska-Stolarska, M., & McInnes, I. B. MicroRNA29a regulates IL-33-mediated tissue remodelling in tendon disease. Nat Commun, 6, 6774. (2015).
    Mitchell, C., Provost, K., Niu, N., Homer, R., & Cohn, L. IFN-gamma acts on the airway epithelium to inhibit local and systemic pathology in allergic airway disease. J Immunol, 187(7), 3815-3820. (2011).
    Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A., & Coffman, R. L. Two Types of Murine Helper T Cell Clone. I. Definition According to Profiles of Lymphokine Activities and Secreted Proteins. J Immunol, 136(7), 2348-2357. (1986).
    Nagai, T., Arai, Y., Emori, M., Nunome, S. Y., Yabe, T., Takeda, T., & Yamada, H. Anti-allergic activity of a Kampo (Japanese herbal) medicine "Sho-seiryu-to (Xiao-Qing-Long-Tang)" on airway inflammation in a mouse model. Int Immunopharmacol, 4(10-11), 1353-1365. (2004).
    Nagai, T., Nakao, M., Shimizu, Y., Kodera, Y., Oh-Ishi, M., Maeda, T., & Yamada, H. Proteomic Analysis of Anti-inflammatory Effects of a Kampo (Japanese Herbal) Medicine "Shoseiryuto (Xiao-Qing-Long-Tang)" on Airway Inflammation in a Mouse Model. Evid Based Complement Alternat Med, Article ID 604196, 13 pages. (2011).
    Neal, M. D., Jia, H., Eyer, B., Good, M., Guerriero, C. J., Sodhi, C. P., Afrazi, A., Prindle, T., Jr., Ma, C., Branca, M., Ozolek, J., Brodsky, J. L., Wipf, P., & Hackam, D. J. Discovery and validation of a new class of small molecule Toll-like receptor 4 (TLR4) inhibitors. PLoS One, 8(6), e65779. (2013).
    Nhu, Q. M., Shirey, K., Teijaro, J. R., Farber, D. L., Netzel-Arnett, S., Antalis, T. M., Fasano, A., & Vogel, S. N. Novel signaling interactions between proteinase-activated receptor 2 and Toll-like receptors in vitro and in vivo. Mucosal Immunol, 3(1), 29-39. (2010).
    O'Neill, L. A., & Bowie, A. G. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol, 7(5), 353-364. (2007).
    Osterlund, C., Gronlund, H., Polovic, N., Sundstrom, S., Gafvelin, G., & Bucht, A. The non-proteolytic house dust mite allergen Der p 2 induce NF-kappaB and MAPK dependent activation of bronchial epithelial cells. Clin Exp Allergy, 39(8), 1199-1208. (2009).
    Pandey, S., & Agrawal, D. K. Immunobiology of Toll-like receptors: emerging trends. Immunol Cell Biol, 84(4), 333-341. (2006).
    Park, C., Hong, S. H., Kim, G. Y., & Choi, Y. H. So-Cheong-Ryong-Tang induces apoptosis through activation of the intrinsic and extrinsic apoptosis pathways, and inhibition of the PI3K/Akt signaling pathway in non-small-cell lung cancer A549 cells. BMC Complement Altern Med, 15, 113. (2015).
    Piao, W., Vogel, S. N., & Toshchakov, V. Y. Inhibition of TLR4 signaling by TRAM-derived decoy peptides in vitro and in vivo. J Immunol, 190(5), 2263-2272. (2013).
    Pike, A. J., Cunningham, M. J., & Lester, P. J. Development of Dermatophagoides pteronyssinus (Acari : Pyroglyphidae) at constant and simultaneously fluctuating temperature and humidity conditions. J Med Entomol, 42(3), 266-269. (2005).
    Pawankar, R. Mast cells as orchestrators of the allergic reaction: the IgE-IgE receptor mast cell network. Curr Opin Allergy Clin Immunol, 1(1), 3-6. (2001).
    Ray, A., & Cohn, L. Th2 cells and GATA-3 in asthma: new insights into the regulation of airway inflammation. J Clin Invest, 104(8), 985-993. (1999).
    Schroder, N. W., & Maurer, M. The role of innate immunity in asthma: leads and lessons from mouse models. Allergy, 62(6), 579-590. (2007).
    Schulz, O., Sutton, B. J., Bead, R. L., Shi, J., Sewell, H. F., Gould, H. J., Laing, P., & Shakib, F. Cleavage of the low-affinity receptor for human IgE (CD23) by a mite cysteine protease: nature of the cleaved fragment in relation to the structure and function of CD23. Eur J Immunol, 27(3), 584-588. (1997).
    Stordeur, P., Poulin, L. F., Craciun, L., Zhou, L., Schandene, L., de Lavareille, A., Goriely, S., & Goldman, M. Cytokine mRNA quantification by real-time PCR. J Immunol Methods, 259(1-2), 55-64. (2002).
    Su, H. J., Wu, P. C., Chen, H. L., Lee, F. C., & Lin, L. L. Exposure assessment of indoor allergens, endotoxin, and airborne fungi for homes in southern Taiwan. Environ Res, 85(2), 135-144. (2001).
    Takeda, K., & Akira, S. TLR signaling pathways. Seminars in Immunology, 16(1), 3-9. (2004).
    Takeda, K., & Akira, S. Toll-like receptors in innate immunity. Int Immunol, 17(1), 1-14. (2005).
    Takeda, K., Kaisho, T., & Akira, S. Toll-like receptors. Annu Rev Immunol, 21, 335-376. (2003).
    Takeuchi, O., Sato, S., Horiuchi, T., Hoshino, K., Takeda, K., Dong, Z., Modlin, R. L., & Akira, S. Cutting Edge: Role of Toll-Like Receptor 1 in Mediating Immune Response to Microbial Lipoproteins. J Immunol, 169(1), 10-14. (2002).
    Thomas, W. R., Hales, B. J., & Smith, W. A. House dust mite allergens in asthma and allergy. Trends Mol Med, 16(7), 321-328. (2010).
    Thomas, W. R., Smith, W. A., & Hales, B. J. The allergenic specificities of the house dust mite. Chang Gung Med J, 27(8), 563-569. (2004).
    Thomas, W. R., Smith, W. A., Hales, B. J., Mills, K. L., & O'Brien, R. M. Characterization and immunobiology of house dust mite allergens. Int Arch Allergy Immunol, 129(1), 1-18. (2002).
    Trompette, A., Divanovic, S., Visintin, A., Blanchard, C., Hegde, R. S., Madan, R., Thorne, P. S., Wills-Karp, M., Gioannini, T. L., Weiss, J. P., & Karp, C. L. Allergenicity resulting from functional mimicry of a Toll-like receptor complex protein. Nature, 457(7229), 585-588. (2009).
    Vainio, I. Real-time PCR method for the detection of cytokine expression in human proinflammatory T cells. Mast's Thesis, Univerisy of Tampere. (2009).
    Wan, H., Winton, H. L., Soeller, C., Gruenert, D. C., Thompson, P. J., Cannell, M. B., Stewart, G. A., Garrod, D. R., & Robinson, C. Quantitative structural and biochemical analyses of tight junction dynamics following exposure of epithelial cells to house dust mite allergen Der p 1. Clin Exp Allergy, 30(5), 685-698. (2000).
    Wan, H., Winton, H. L., Soeller, C., Taylor, G. W., Gruenert, D. C., Thompson, P. J., Cannell, M. B., Stewart, G. A., Garrod, D. R., & Robinson, C. The transmembrane protein occludin of epithelial tight junctions is a functional target for serine peptidases from faecal pellets of Dermatophagoides pteronyssinus. Clin Exp Allergy, 31(2), 279-294. (2001).
    Wang, J. Y. The innate immune response in house dust mite-induced allergic inflammation. Allergy Asthma Immunol Res, 5(2), 68-74. (2013).
    Wang, Y. H., Angkasekwinai, P., Lu, N., Voo, K. S., Arima, K., Hanabuchi, S., Hippe, A., Corrigan, C. J., Dong, C., Homey, B., Yao, Z., Ying, S., Huston, D. P., & Liu, Y. J. IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC-activated Th2 memory cells. J Exp Med, 204(8), 1837-1847. (2007).
    Xie, S., Macedo, P., Hew, M., Nassenstein, C., Lee, K. Y., & Chung, K. F. Expression of transforming growth factor-beta (TGF-beta) in chronic idiopathic cough. Respir Res, 10, 40. (2009).
    Xu, H., Zhang, G. X., Ciric, B., & Rostami, A. IDO: a double-edged sword for T(H)1/T(H)2 regulation. Immunol Lett, 121(1), 1-6. (2008).
    Yamamoto, M., Sato, S., Hemmi, H., Uematsu, S., Hoshino, K., Kaisho, T., Takeuchi, O., Takeda, K., & Akira, S. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat Immunol, 4(11), 1144-1150. (2003).
    Zhou, X., Jiang, Y., Lu, L., Ding, Q., Jiao, Z., Zhou, Y., Xin, L., & Chou, K. Y. MHC class II transactivator represses human IL-4 gene transcription by interruption of promoter binding with CBP/p300, STAT6 and NFAT1 via histone hypoacetylation. Immunology, 122(4), 476-485. (2007).
    Zhu, J., & Paul, W. E. CD4 T cells: fates, functions, and faults. Blood, 112(5), 1557-1569. (2008).
    Zuany-Amorim, C., Hastewell, J., & Walker, C. Toll-like receptors as potential therapeutic targets for multiple diseases. Nat Rev Drug Discov, 1(10), 797-807. (2002).

    下載圖示 校內:立即公開
    校外:2019-01-01公開
    QR CODE