研究生: |
邱信凱 Chiu, Hsin-Kai |
---|---|
論文名稱: |
鎳金合金奈米粒子之製備與特性研究 Preparation and Characterization of Ni-Au Alloy Nanoparticles |
指導教授: |
陳東煌
Chen, Dong-Hwang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 98 |
中文關鍵詞: | 合金奈米粒子 |
外文關鍵詞: | alloy nanoparticles |
相關次數: | 點閱:98 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文在water/CTAB/1-butanol/isooctane微乳化系統中,於65C下以聯氨還原氯化鎳及四氯金酸來製備鎳/金合金型及核殼型奈米粒子,探討其粒徑、光學特性、組成、結構、磁性、及生物毒性等,並觀察其在外加磁場下之磁自組行為。
穿透式電子顯微鏡(TEM)分析顯示,不同組成( Ni/Au莫耳比= 1/0、3/1、1/1、1/3、0/1 )的鎳金合金奈米粒子,其平均粒徑小於20 nm,且隨著金含量比例增加而有逐漸變小的趨勢。比較合金與單金屬奈米粒子之UV/VIS吸收光譜,可知在微乳化系統中的確可製得不同組成的鎳金合金奈米粒子,且由X射線繞射儀(XRD)及電子繞射圖可知所製得之合金奈米粒子為面心立方結構。以原子吸收光譜儀(AAS)分析粒子整體組成,發現皆與反應液之金屬鹽組成相似,而能量分散光譜儀(EDX)分析更直接證明單顆鎳金合金奈米粒子的組成約略等於反應液之金屬鹽組成,說明了合金粒子的形成與組成的均勻性。利用超導量子干涉儀(SQUID)測量粒子的交換偏移場消失溫度(TB)、飽和磁化量(Ms)、殘留磁化量(Mr)和保磁力(Hc),可知隨著鎳含量的減少,粒徑逐漸變小,且磁性材料的特徵物理量均有減少的趨勢。這些現象可歸因於個別金屬成分的還原速率及其粒子形成速率與原子結構等差異。又在外加磁場下,磁性粒子可依磁場方向自組裝排列形成20~50m長的平行線。此外,由生物毒性測試得知,不同組成之鎳金合金奈米粒子的生物毒性皆較純鎳奈米粒子為低,但相關因素與機制則有待進一步研究。最後,本研究也以Ni3Au1合金奈米粒子為核,在其表面被覆不同厚度的金奈米殼層,製得核殼型金屬奈米粒子,並探討其組成、粒徑、結構、與光學特性。
In this thesis, Ni/Au alloy and core-shell composite nanoparticles at various molar ratios were prepared by the hydrazine reduction of nickel chloride and hydrogen tetrachloroaurate in the microemulsion system of water/CTAB/1-butanol/isooctane at 65C. The size, optical property, composition, structure, magnetic property, and cytotoxicity of the resultant composite nanopartilces were investigated. Also, their self-organization at an external magnetic field was examined.
The analysis by transmission electron microscopy (TEM) revealed that the mean diameters of Ni/Au alloy nanoparticles at various molar ratios (Ni/Au=1/0, 3/1, 1/1, 1/3, 0/1) were less than 20 nm and decreased with increasing the Au content. The comparison between the UV/VIS absorption spectra of monometallic and alloy nanoparticles suggested the formation of Ni/Au alloy nanoparticles at various molar ratios. The analyses of XRD patterns and electron diffraction pattern indicated that the resultant alloy nanoparticles possessed the face-centered cubic (f.c.c) structure. The composition analysis by atomic absorption spectrometer (AAS) showed the overall compositions of alloy nanoparticles were similar to those in the starting solutions. Also, the energy dispersive X-ray analysis (EDX) on a single particle indicated the composition of each alloy nanoparticle was consistent with the composition in the starting solutions. This suggested the formation of alloy nanoparticles and their uniformity in composition. The blocking temperature (TB), saturation magnetization (MS), remanent magnetization (Mr), and coercivity (Hc) of Ni/Au alloy nanoparticles at molar ratios were measured by the superconducting quantum interference device (SQUID) magnetometer. These physical quantities are affected by the particle size and magnetic molecular clusters. These phenomena could be referred to the differences in the reduction rate of each metallic particles, the formation rate of particles, and the atomic structure. At an external magnetic field, the magnetic nanoparticles were self-organized into the parallel lines of 20-50 m in length. In addition, the cytotoxicity evaluation revealed that Ni/Au alloy nanoparticles had lower cytotoxic activity than Ni nanoparticles. The related actors and mechanism need further investigations. Moreover, in this study, the Au nano-shells with various thicknesses were coated on the surface of Ni3Au1 alloy nanoparticles to yield a core-shell structure. Their composition, size, structure, and optical properties were also investigated.
1. 馬振基編撰,奈米材料科技原理與應用,全華科技圖書 (2003)
2. 工研院工業材料研究所,材料奈米技術專刊,經濟部技處 (2001)
3. 莊萬發編撰,超微粒子理論應用,復漢出版社(1995)
4. 尹邦躍編撰,奈米時代 (2002)
5. 蘇品書編撰,超微粒子材料技術,復漢出版社 (1989)
6. 王鉦源,以化學還原法製備奈米級銀鈀微粉,國立成功大學化學工程
研究所碩士論文 (2002)
7. 吳明立,微乳化系統製備雙金屬奈米粒子之研究,國立成功大學化學
工程研究所博士論文 (2001)
8. 龔建華,“你不可不知的奈米科技<科學視界30>-影響世界、改變
未來”,世茂出版社 (2002)
9. Hunter, R. J., Foundations of Colloid Science Vol. 1, Oxford, New
York, 452 (1999)
10. McKee, D. W., “Catalytic activity and sintering of platinum black.
I. kinetics of propane cracking” J.Phys. Chem., 67,841 (1963)
11. Liu, J. H.; Wang, A. Q.; Chi, Y. S.; Lin, H. P.; Mou, C. Y.;
“Synergistic effect in an Au-Ag alloy nanocatalyst: CO oxidation”,
J. Phys. Chem. B,Vol. 109, No. 1, (2005)
12. N. Ichinose, Y. Ozaki and S. Kashu, “Superfine Particle Technology”,
Springer-Verlag London Limited, (1992)
13. S. S. Chang and C. R .C. Wang, “金屬奈米粒子的吸收光譜”, Chemistry,
. 56(3), 209 (1998)
14 張煦,李學養,磁性物理學,聯經出版事業公司 (1982)
15. 陳東煌,“複合奈米粒子”,化工資訊與商情,3, 58 (2003)
16. 葉晨聖,“金屬奈米顆粒及其應用”,化工資訊與商情,5 (2003)
17. Toshima, N. and Yonezawa,T., “Bimetallic nanoparticles : novel
materials for chemical and physical applications”, New. J. Chem.,
1179 (1998)
18. Toshima, N.; Lu, P. “Synthesis and catalysis of colloidal
dispersions of Pd/Ni bimetallic cluster”, Chem. Lett.,729 (1996)
19. Toshima, N; Wang, Y., “Polymer-protected Cu/Pd bimetallic clusters”,
Adv.Mater.,6,245 (1994)
20. Reetz, M. T.; Helbig, W.; Quaiser, S. A., “Electrochemical
preparation of nanostructure bimetallic clusters”, Chem. Master, 7,
2227 (1995)
21. Park, K. W.; Choi, J. H.; Kwon, B. K.; Lee, S. A.; Ha, H. Y.; Hong,
S. A.;Sung, Y. E.; “Chemical and electronic effects of Ni in Pt/Ni
and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation”, J.
Phys. Chem. B, 106,1869 (2002)
22. Yang, H.; Coutanceau, C.; Leger, J. M.; Lamy, C.; “Methanol tolerant
oxygen reduction on carbon-supported Pt–Ni alloy nanoparticles”,
J.Electroanalytical Chem., 576, 305 (2005)
23. Ryu, B. H.; Yoon, S. P.; Han, J.; “In situ oxidation/lithiation of
Ni–Co alloy in the molten Li0.62/K0.38 carbonates eutectics”,
Electrochimica Acta 50, 189 (2004)
24. Kurikka, V. P.; Shafi, M.; Prozorov, R. “Sonochemical preparation and
characterization of nanosized amorphous Co-Ni alloy powders”, J.
Mater.Chem., 8 (3), 769 (1998)
25. Han, Q.; Liu, K.; Chen, J.; Wei, X.; “Hydrogen evolution reaction on
amorphous Ni–S–Co alloy in alkaline medium”, International Journal
of Hydrogen Energy, 28, 1345 (2003)
26. Shen, J.; Hu, Z.; Zhang, L.; Chen, Y.; “The preparation of Ni-P
ultrafine amorphous alloy particles by chemical reduction”, Appl.
Phys. Lett. 59 ,30 (1991)
27. Hu, Z.; Shen, J.; Chen, Y.; “Spherical amorphous nickel-phosphorus
alloy particles with uniform size prepared at room temperature”,
J.Non-Crystalline Solids, 159, 88 (1993)
28. Niu, H. L.; Chen, Q. W.; Lin, Y. S.; Zhu, H. F.; Ning, M.;
“Hydrothermal formation of magnetic Ni–Cu alloy nanocrystallites at
low temperatures”, Nanotechnology 15 1054 (2004)
29. Bettge, M.; Chatterjee, J.; Haik, Y.; “Physically synthesized Ni-Cu
nanoparticles for magnetic hyperthermia”, BioMagnetic Research and
Technology (2004)
30. Li, Y. D.; Chen, J.; Ma, Y.; Zhao, J.; Chang, L.; “Formation of
bamboo-like nanocarbon and evidence for the quasi-liquid state of
nanosized metal particles at moderate temperatures”, Chem. Commun.,
1141 (1999)
31. Morke, W.; Bieruta, T.; Jarsetz, J.; Gorsmann, C.; Schubert, U.;
“Characterization of highly dispersed bimetallic Ni-Cu alloy
particles by ferromagnetic resonance”, Colloids and Surfaces A:
Physicochemical and Engineering Aspects, 115, 303 (1996)
32. Gedanken, A.; “Sonochemical preparation of nanosized amorphous Fe-Ni
alloys”, J. Applied Physics, 81, 6901 (1997)
33. Zhang, T. T.; Zhou, Z. J.; Zhang, Q. Y.; “The preparation of Fe-Co
alloy nanoparticles by the reduction of aluminum powders in a mixed
sulfate solution”, Acta Physico-Chimica Sinica 20(10), 1239 (2004)
34. Abes, J. I.; Cohen, R. E.; Ross, C. A.; “Block-copolymer-templated
synthesis of iron, iron–cobalt,and cobalt–nickel alloy
nanoparticles”, Materials Science and Engineering, C 23, 641 (2003)
35. Hou, Y.; Kondoh, H.; Kogure, T.; Ohta, t.; “Preparation and
characterization of monodisperse FePd nanoparticles”, Chem. Mater.,
16 5149 (2004)
36. Shafi, K.; Gedanken, A.; Prozorov, R.; Revesz, A.; Lendvai, J.;
“Preparation and magnetic properties of nanosized amorphous ternary
Fe–Ni–Co alloy powders”, J.Mater.Res.,15, 332 (2000)
37. 曹茂盛編撰,奈米材料導論,學富出版社 (2002)
38. 王世敏,許祖勛編撰,奈米材料原理與製備,五南出版社(2004)
39. 李潔如,牟中原,“微胞、微乳液的形成”,科學月刊,298 (1994)
40. 王鳳英,“界面活性劑的原理與應用”,高立圖書有限公司 (1989)
41. Link, S.; Wang, Z. L.; El-Sayed, M. A., “Alloy formation of gold-
silver nanoparticles and the dependence of the plasmon absorption on
their composition”, J. Phys. Chem. B. ,103, 3529 (1999)
42. Marignier, J.-L.; Belloni, J.; Delcourt, M.-O.; Chevalier, J. P.,
“Microaggregates of non-noble metals and bimetallic alloys prepared
by riadiation-induced reduction”, Nature, 317, 344 (1985)
43. Bonnemann, H.; Richards, R. M., “ Nanoscopic metal particles -
synthetic methods and potential applications” Eur. J. Inorg. Chem.,
10, 2455 (2001)
44. Moulik, S. P. and Paul, B. K., “Structure, dynamics and transport
properties of microemulsions”, Adv. colloid interface Sci., 78, 99
(1998)
45. Luisi, P. L. and Magid, L. J., “Synthetic Applications of Enzymes
Entrapped in Reverse Micelles & Organo-Gels”, CRC Crit. Rev.
Biochem., 20, 409 (1986)
46. 陳育裕,鐵氧超微磁粉之製備研究,國立成功大學化學工程研究所碩
士論文 (1998)
47. 陳東煌,王正全,黃定加,“逆微胞技術在超微粒子製備上之應用”,
化工, 45(5), 40 (1998)
48. Luisi, P. L., Angew. “Enzymes hosted in reverse micelles in
hydrocarbon
solution”, Chem. Int. Ed. Engl., 24, 439 (1985)
49. Messing, G. L., Hirano, S. and Hausner, H., “A constitutive model
for the finite-element simulation of sintering-distortions and
stresses. ”, Ceramic Powder Science III, (1990)
50. Luisi, P. L., Hofmann, B. S., “Activity and conformation of enzymes
in reverse micellar solutions”, Methods in Enzymology, 136, 188
(1987)
51 Hostetler, M. J.; Zhong, C. J.; Yen, B. K. H.; Anderegg, J.; Gross,
S. M.; Evans, N. D.; Porter, M.; Murray, R. W., “Stable, monolayer-
protected metal alloy clusters.”, J. Am. Chem. Soc. 120, 9396 (1998)