| 研究生: |
何德婉 Heriza, Dewinta |
|---|---|
| 論文名稱: |
PM2.5濃度時空變異分析使用地理資訊系統與遙感探測技術 Integration of GIS and Remote Sensing on Estimating Spatial-Temporal Variability of PM2.5 |
| 指導教授: |
林昭宏
Lin, Chao-Hung |
| 共同指導教授: |
吳治達
Wu, Chih-Da |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 細懸浮微粒 、土地利用回歸模型 、衛星影像 |
| 外文關鍵詞: | Fine Particulate matter, Land Use-Regression, Satellite images |
| 相關次數: | 點閱:122 下載:27 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
細懸浮微粒(PM2.5)所造成的空氣汙染已經成為各國政府主要的環境問題之一。因此我們有必要監測與預測空氣質量,以便環境管理及控制。先前研究中結合多種因子訓練土地利用回歸模型,以台北市資料為例預估PM2.5的濃度,包含化學粒子、氣象資訊、環境綠化和地標等,並凸顯亞洲都市的典型特徵。近期更是有許多研究關注改善尤其是PM2.5空氣汙染的預估。除了於GIS資料庫中常用的預估法,本研究透過Landsat-8影像中的地面資訊、水體、森林及建成區作為PM2.5濃度預測之模型建構。因此,本研究除使用GIS資料庫中的預測器之外,結合了光學衛星影像的分類器預估PM2.5的濃度。實驗使用2013至2018年間17個EPA空氣品質監測站之PM2.5年度平均值,作為實際資料並訓練土地利用回歸模型,並使用了10折交叉驗證評估實驗結果。定量分析使用決定係數(R2)與均方根誤差量化模型能力表現。
Fine particulate matter (PM2.5) is an air pollutant that has been becoming one of the major environmental issues in national governments. Air quality monitoring and prediction are thus necessary for management and control. In previous studies, a land-use regression (LUR) model with several factors such as chemical particles, meteorological information, greenness environments, and landmarks combined with interpolation techniques is used to predict PM2.5 concentrations using data from Taipei metropolis, which exhibits typical Asian city characteristics. Recently, a lot of attention was paid to the improvement of methods that are used to predict air quality, especially PM2.5. This study proposed adopting ground information, including water body, forest, and built-up area, from Landsat-8 images as predictors in the modeling of PM2.5 concentration, in addition to the commonly-used predictors from the GIS database. Thus, this study used not only the predictors from the GIS database but the predictors from the classification of optical satellite images to model the PM2.5 concentrations. For the in-situ samples used in the model training, an annual average of PM2.5 concentrations from 2013-2018 of 17 air-quality monitoring stations established by EPA Ire used, and LUR is used as the regression method. In order to obtain the results, the 10-fold cross-validation methodology is used for the proposed method. Quantitative accuracy assessment is done to demonstrate the capability of the proposed model in terms of determination coefficient (R2) and root means square error (RMSE).
Anderson, H., Atkinson, R., Peacock, J., Marston, L., Konstantinou, K., 2004. Meta-analysis of time-series studies and panel studies of particulate matter (PM) and ozone (O3). Rep. a WHO Task Gr. 1–68.
Beelen, R., Hoek, G., Vienneau, D., Eeftens, M., Dimakopoulou, K., Pedeli, X., Tsai, M.Y., Künzli, N., Schikowski, T., Marcon, A., Eriksen, K.T., Raaschou-Nielsen, O., Stephanou, E., Patelarou, E., Lanki, T., Yli-Tuomi, T., Declercq, C., Falq, G., Stempfelet, M., Birk, M., Cyrys, J., von Klot, S., Nádor, G., Varró, M.J., Dedele, A., Gražulevičiene, R., Mölter, A., Lindley, S., Madsen, C., Cesaroni, G., Ranzi, A., Badaloni, C., Hoffmann, B., Nonnemacher, M., Krämer, U., Kuhlbusch, T., Cirach, M., de Nazelle, A., NieuInhuijsen, M., Bellander, T., Korek, M., Olsson, D., Strömgren, M., Dons, E., Jerrett, M., Fischer, P., Wang, M., Brunekreef, B., de Hoogh, K., 2013. Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe - The ESCAPE project. Atmos. Environ. 72, 10–23. https://doi.org/10.1016/j.atmosenv.2013.02.037
Cheung, K., Daher, N., Kam, W., Shafer, M.M., Ning, Z., Schauer, J.J., Sioutas, C., 2011. Spatial and temporal variation of chemical composition and mass closure of ambient coarse particulate matter (PM10-2.5) in the Los Angeles area. Atmos. Environ. 45, 2651–2662. https://doi.org/10.1016/j.atmosenv.2011.02.066
DGB (Directorate General of Budget), 2011. National Statistics-current Index [WWW Document]. http:// www.stat.gov.tw/point.asp?index=4.
Dieter, S., Gary, H., Cornie, H., Wha-Jin, H., Herbert, F., May, A., 2012. Built-up area Air Pollution in Asian Cities: Status, Challenges and Management.
Eze, I.C., Schaffner, E., Fischer, E., Schikowski, T., Adam, M., Imboden, M., Tsai, M., Carballo, D., von Eckardstein, A., Künzli, N., Schindler, C., Probst-Hensch, N., 2014. Long-term air pollution exposure and diabetes in a population-based Swiss cohort. Environ. Int. 70, 95–105. https://doi.org/10.1016/j.envint.2014.05.014
Henderson, S.B., Beckerman, B., Jerrett, M., Brauer, M., 2007. Application of land use regression to estimate long-term concentrations of traffic-related nitrogen oxides and fine particulate matter. Environ. Sci. Technol. 41, 2422–2428. https://doi.org/10.1021/es0606780
Hoek, G., Beelen, R., de Hoogh, K., Vienneau, D., Gulliver, J., Fischer, P., Briggs, D., 2008. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos. Environ. 42, 7561–7578. https://doi.org/10.1016/j.atmosenv.2008.05.057
Kelishadi, R., Poursafa, P., 2010. Air pollution and non-respiratory health hazards for children. Arch. Med. Sci. 6, 483–495. https://doi.org/10.5114/aoms.2010.14458
Kerckhoffs, J., Wang, M., Meliefste, K., Malmqvist, E., Fischer, P., Janssen, N.A.H., Beelen, R., Hoek, G., 2015. A national fine spatial scale land-use regression model for ozone. Environ. Res. 140, 440–448. https://doi.org/10.1016/j.envres.2015.04.014
Lewis-Beck, M., Bryman, A., Futing Liao, T., 2012. Stepwise Regression. SAGE Encycl. Soc. Sci. Res. Methods 1–9. https://doi.org/10.4135/9781412950589.n974
Manisalidis, I., Stavropoulou, E., Stavropoulos, A., Bezirtzoglou, E., 2020. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Heal. 8, 1–13. https://doi.org/10.3389/fpubh.2020.00014
Ren, H., Chang, C.I., 2000. A generalized orthogonal subspace projection approach to unsupervised multispectral image classification. IEEE Trans. Geosci. Remote Sens. 38, 2515–2528. https://doi.org/10.1109/36.885199
Ryan, P.H., Lemasters, G.K., 2007. A review of land-use regression models for characterizing intrabuilt-up area air pollution exposure. Inhal. Toxicol. 19, 127–133. https://doi.org/10.1080/08958370701495998
Thenewslens.com, n.d. What Will It Take to Improve Taiwan's Air? [WWW Document]. 2018.
Thomas R. Karl, Jerry M. Melillo, and T.C.P., 2009. Global Climate Change Impacts in the United States.
Tunno, B.J., Dalton, R., Cambal, L., Holguin, F., Lioy, P., Clougherty, J.E., 2016. Indoor source apportionment in built-up area communities near industrial sites. Atmos. Environ. 139, 30–36. https://doi.org/10.1016/j.atmosenv.2016.04.039
United States Geological Survey, 2020. Landsat Surface Reflectance. Landsat Sci. Prod. 6932, 20153034.
Wu, C. Da, Chen, Y.C., Pan, W.C., Zeng, Y.T., Chen, M.J., Guo, Y.L., Lung, S.C.C., 2017. Land-use regression with long-term satellite-based greenness index and culture-specific sources to model PM2.5 spatial-temporal variability. Environ. Pollut. 224, 148–157. https://doi.org/10.1016/j.envpol.2017.01.074
Wu, C. Da, McNeely, E., Cedeño-Laurent, J.G., Pan, W.C., Adamkiewicz, G., Dominici, F., Lung, S.C.C., Su, H.J., Spengler, J.D., 2014. Linking student performance in Massachusetts elementary schools with the "greenness" of school surroundings using remote sensing. PLoS One 9, 1–9. https://doi.org/10.1371/journal.pone.0108548
Zhang, L., Yang, Y., Li, Y., Qian, Z. (Min), Xiao, W., Wang, X., Rolling, C.A., Liu, E., Xiao, J., Zeng, W., Liu, T., Li, X., Yao, Z., Wang, H., Ma, W., Lin, H., 2019. Short-term and long-term effects of PM2.5 on acute nasopharyngitis in 10 communities of Guangdong, China. Sci. Total Environ. 688, 136–142. https://doi.org/10.1016/j.scitotenv.2019.05.470