| 研究生: |
張俐雯 Chang, Li-Wen |
|---|---|
| 論文名稱: |
沙門氏腸炎桿菌致病因子之研究 Study on the virulence factors of Salmonella enteritidis |
| 指導教授: |
張敏政
Chang, Ming-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學研究所 Department of Biochemistry |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 151 |
| 中文關鍵詞: | 沙門氏腸炎桿菌 |
| 外文關鍵詞: | Salmonella enteritidis |
| 相關次數: | 點閱:54 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
沙門氏腸炎桿菌是一株人畜共通的病原菌,最常經由污染的雞肉及雞蛋而感染嬰幼兒、老年人或免疫力差的成人。Egg-associated Salmonellosis的感染案例逐年上升,最主要是因為許多Salmonella菌株都產生多重抗藥性。因此,對於疫苗的開發及尚未發現之致病機轉的研究,相對地就顯的非常重要。故本實驗室積極的希望能從S.enteritidis的基因庫中篩選出與免疫保護及感染致病相關的重要因子,以期望能發展成疫苗或研究未知之致病機轉。
之前實驗室由構築好的S. enteritidis的基因庫中,利用綿羊血培養基去進行致病因子的篩選,共篩選出兩種具有溶血活性的基因,分別命名為outer membrane protein p1 (ompp1) 及hemolytic activity gene (hly)。OMP暴露在菌體的表面,可以被抗體所認識而成為一個好的免疫原。經由Cell fractionation的分析,證實此OMPP1蛋白質是位於outer membrane fraction,因此認為它可能與寄主的immune response有關;而hemolysin-like protein具有一段signal peptide,會將此蛋白質鑲嵌在膜上或分泌至細胞外,所以也具有成為免疫原的潛力。於是進行此二段基因的構築及表現,並進一步以動物實驗模式觀察主動免疫的保護效果,初步發現外膜蛋白P1(OMPP1)約具有60%的保護效果,而溶血活性蛋白(HLY)則只有10%的保護效果。另外在被動免疫上,先利用腹腔注射的方法打入175 c.f.u.的S.enteritidis,經3小時後使細菌循環到全身,再利用尾靜脈注射打入200ug的抗體,做緊急的保護中和效果,初步發現外膜蛋白P1(OMPP1)約具80%的治療效果,而溶血活性蛋白(HLY)則沒有治療效果。因此我們認為外膜蛋白P1(OMPP1)蛋白質對動物體有良好的保護(60%)及治療(80%)效果,具有發展成為疫苗的潛力。
為了使我們能更瞭解ompp1 gene在Salmonella致病能力上所扮演的角色,於是我們針對ompp1 gene,利用同源染色體重組之特性進行基因剔除(gene knockout),並由 PCR及Western blotting的結果確認無誤後,再以細胞培養實驗去證實,將Salmonella 的ompp1 gene 破壞之後,此突變株對HeLa cell 的adhesion抑制達70%,對invasion的抑制達73%;另外再以BALB/C小鼠測試突變株與野生株半致死率(LD50)的差異,由結果顯示,ompp1 gene在Salmonella的致病感染上應該有其重要性。
Salmonella enteritidis is a facultative intracellular pathogen that can cause disease in humans and animals. Poultry meat and eggs are considered to be the major source of infection for infant, elderly, and those with impaired immune system. Egg associated salmonellosis have been raised because many strains of salmonella have become resistant to several of the antibiotics traditionally used to treat it. Today, modern chemotherapy must consider the treatment of antibiotics resistance and target factors that are required for the pathogenesis of bacterial infection. The purpose of this research is to characterize the virulence-associate factors and elucidate their roles in the pathogenesis of S.enteritidis.
In our previous study, two hemolytic activity genes have been cloned from genomic library of S.enteritidis (Sal-5). One gene encodes outer membrane protein P1 (OMPP1), and the other encodes hemolysin like protein (HLY). OMP are exposed on the surface of the bacterial cell and they can serve as phage receptors and react with antibodies. In this study, the results of cell fraction experiment indicated that OMPP1 is an outer membrane associated protein. HLY seems to have a cleavable N-terminal signal peptide and may be anchored in the membrane or secreted to the medium by prediction of computer. With their physical and biological characteristics, OMPP1 and HLY may be used successfully as vaccine antigens and good immunogens.
To evaluate whether OMPP1 and HLY could confer protective immunity against S.enteritidis infection or not, active and passive immunization experiments were performed. Mice immunized with OMPP1 showed 60% protection and immunized with HLY showed 20%protection against challenged with 373 c.f.u. of S.enteritidis, compared to a 90% mortality in mice immunized with BSA. For passive immunization experiment, mice challenged intra-peritoneally (I.P.) with 175 c.f.u. of S.enteritidis were intra-venous (I.V.) treated with 200ul anti-OMPP1 or anti-HLY antibody one times a day for five consecutive days. Antibody treatment resulted in a survival rate of 80% for using anti-OMPP1 antibody and 10% for using anti-HLY antibody, compared to a 90% mortality in mice treated with pre-immune antibody. These results indicated that OMPP1 is a good immunogen and can provide the protective effects in both active and passive immunization.
In order to study the role of OMPP1 in the pathogenesis of Salmonella infection, ompp1-deficient strain was constructed by using integrated plasmid to disrupt the original ompp1 gene. In vitro studies of bacterial adhesion and invasion on intestinal epithelial cell lines and epithelial monolayer were performed. Compared to wild-type strain, the ompp1 mutant exhibited a 70% decrease in adhesion ability and a 73%decrease in invasion ability. These results indicated that OMPP1 is involved in cellular adhesion and invasion, and plays an important role of Salmonella in natural infection route.
1.Altekruse SF, Swerdlow DL. The changing epidemiology of
foodborne diseases. Am J Med Sci. 1996 Jan; 311(1):23-9.
2.Altmeyer RM, McNern JK, Bossio JC, Rosenshine I, Finlay BB,
Galan JE. Cloning and molecular characterization of a gene
involved in Salmonella adherence and invasion of cultured
epithelial cells. Mol Microbiol. 1993 Jan; 7(1):89-98.
3.Araj GF, Chugh TD. Detection of Salmonella spp. in clinical
specimens by capture enzyme-linked immunosorbent assay. J
Clin Microbiol. 1987 Nov; 25(11):2150-3.
4.Barbour EK, Hamadeh SK, Bejjani NE, Faroon OM, Eid A, Sakr
W, Bouljihad M, Spasojevic R, Safieh-Garabedian B.
Immunopotentiation of a developed Salmonella enterica
serotype enteritidis vaccine by thymulin and zinc in meat
chicken breeders. Vet Res Commun. 2001 Aug; 25(6):437-47.
5.Baumler AJ, Hargis BM, Tsolis RM. Tracing the origins of
Salmonella outbreaks. Science. 2000 Jan 7; 287(5450):50-2.
6.Baumler AJ, Heffron F, Reissbrodt R. Rapid detection of
Salmonella enterica with primers specific for iroB. J Clin
Microbiol. 1997 May; 35(5):1224-30.
7.Baumler AJ, Tsolis RM, Heffron F. Contribution of fimbrial
operons to attachment to and invasion of epithelial cell
lines by Salmonella typhimurium. Infect Immun. 1996 May; 64
(5):1862-5.
8.Behlau I, Miller SI. A PhoP-repressed gene promotes
Salmonella typhimurium invasion of epithelial cells. J
Bacteriol. 1993 Jul; 175(14):4475-84.
9.Betley MJ, Miller VL, Mekalanos JJ. Genetics of bacterial
enterotoxins. Annu Rev Microbiol. 1986; 40:577-605.
10.Bhakdi S, Bayley H, Valeva A, Walev I, Walker B, Kehoe M,
Palmer M. Staphylococcal alpha-toxin, streptolysin-O, and
Escherichia coli hemolysin: prototypes of pore-forming
bacterial cytolysins. Arch Microbiol. 1996 Feb; 165(2):73-9.
11.Blackburn CW. Rapid and alternative methods for the
detection of salmonellas in foods. J Appl Bacteriol. 1993
Sep; 75(3):199-214.
12.Bliska JB, Galan JE, Falkow S. Signal transduction in the
mammalian cell during bacterial attachment and entry. Cell.
1993 Jun 4; 73(5):903-20.
13.Bottger EC. Rapid determination of bacterial ribosomal RNA
sequences by direct sequencing of enzymatically amplified
DNA. FEMS Microbiol Lett. 1989 Nov; 53(1-2):171-6.
14.Burney DP, Fisher RD, Schaffner W. Salmonella empyema: a
review. South Med J. 1977 Mar; 70(3):375-7.
15.Centers for Disease Control and Prevention. Outbreaks of
Salmonella Serotype Enteritidis Infection Associated with
Consumption of Raw Shell Eggs -- United States, 1994-1995
MMWR Morb Mortal Wkly Rep. 1996 Aug 30; 45(34); 737-742.
16.Centers for Disease Control and Prevention. Summary of
notifiable diseases, United States, 1997. MMWR Morb Mortal
Wkly Rep. 1998 Nov 20; 46(54): ii-vii, 3-87.
17.Chart H, Baskerville A, Humphrey TJ, Rowe B. Serological
responses of chickens experimentally infected with
Salmonella enteritidis PT4 by different routes. Epidemiol
Infect. 1992 Oct; 109(2):297-302.
18.Clark MA, Jepson MA, Simmons NL, Hirst BH. Preferential
interactions of Salmonella typhimurium with mouse Peyer’s
patch M cells. Res Microbiol. 1994 Sep; 145(7):543-52.
19.Daniels JJ, Autenrieth IB, Ludwig A, Goebel W. The gene
slyA of Salmonella typhimurium is required for destruction
of M cells and intracellular survival but not for invasion
or colonization of the murine small intestine. Infect
Immun. 1996 Dec; 64(12):5075-84.
20.Desmidt M, Ducatelle R, Haesebrouck F, de Groot PA,
Verlinden M, Wijffels R, Hinton M, Bale JA, Allen VM.
Detection of antibodies to Salmonella enteritidis in sera
and yolks from experimentally and naturally infected
chickens. Vet Rec. 1996 Mar 9; 138(10):223-6.
21.Doran KS, Chang JC, Benoit VM, Eckmann L, Nizet V. Group B
streptococcal beta-hemolysin/cytolysin promotes invasion of
human lung epithelial cells and the release of interleukin-
8. J Infect Dis. 2002 Jan 15; 185(2):196-203. Epub 2002 Jan
03.
22.Edwards RA, Schifferli DM, Maloy SR. A role for Salmonella
fimbriae in intraperitoneal infections. Proc Natl Acad Sci
U S A. 2000 Feb 1; 97(3):1258-62.
23.Emejuru O, Jayam-Trouth A. Salmonella meningitis in
infancy. J Natl Med Assoc. 1988 Jul; 80(7):824-5, 829.
24.Falbo V, Pace T, Picci L, Pizzi E, Caprioli A. Isolation
and nucleotide sequence of the gene encoding cytotoxic
necrotizing factor 1 of Escherichia coli. Infect Immun.
1993 Nov; 61(11):4909-14.
25.Fukutome K, Watarai S, Mukamoto M, Kodama H. Intestinal
mucosal immune response in chickens following intraocular
immunization with liposome-associated Salmonella enterica
serovar enteritidis antigen. Dev Comp Immunol. 2001 Jun-
Jul; 25(5-6):475-84.
26.Galan JE, Pace J, Hayman MJ. Involvement of the epidermal
growth factor receptor in the invasion of cultured
mammalian cells by Salmonella typhimurium. Nature. 1992 Jun
18; 357(6379):588-9.
27.Galdiero F, Tufano MA, Galdiero M, Masiello S, Di Rosa M.
Inflammatory effects of Salmonella typhimurium porins.
Infect Immun. 1990 Oct; 58(10):3183-6.
28.Garcia-del Portillo F, Foster JW, Finlay BB. Role of acid
tolerance response genes in Salmonella typhimurium
virulence. Infect Immun. 1993 Oct; 61(10):4489-92.
29.Gibson RL, Nizet V, Rubens CE. Group B streptococcal beta-
hemolysin promotes injury of lung microvascular endothelial
cells. Pediatr Res. 1999 May; 45(5 Pt 1):626-34.
30.Gill GV. Endocarditis caused by Salmonella enteritidis. Br
Heart J. 1979 Sep; 42(3):353-4.
31.Guard-Petter J. Variants of smooth Salmonella enterica
serovar Enteritidis that grow to higher cell density than
the wild type are more virulent. Appl Environ Microbiol.
1998 Jun; 64(6):2166-72.
32.Herrero M, de Lorenzo V, Timmis KN. Transposon vectors
containing non-antibiotic resistance selection markers for
cloning and stable chromosomal insertion of foreign genes
in gram-negative bacteria. J Bacteriol. 1990 Nov; 172
(11):6557-67.
33.Hesse DG, Tracey KJ, Fong Y, Manogue KR, Palladino MA Jr,
Cerami A, Shires GT, Lowry SF. Cytokine appearance in human
endotoxemia and primate bacteremia. Surg Gynecol Obstet.
1988 Feb; 166(2):147-53.
34.Hogue A, White P, Guard-Petter J, Schlosser W, Gast R, Ebel
E, Farrar J, Gomez T, Madden J, Madison M, McNamara AM,
Morales R, Parham D, Sparling P, Sutherlin W, Swerdlow D.
Epidemiology and control of egg-associated Salmonella
enteritidis in the United States of America. Rev Sci Tech.
1997 Aug; 16(2):542-53.
35.Hogue A, White P, Guard-Petter J, Schlosser W, Gast R, Ebel
E, Farrar J, Gomez T, Madden J, Madison M, McNamara AM,
Morales R, Parham D, Sparling P, Sutherlin W, Swerdlow D.
Epidemiology and control of egg-associated Salmonella
enteritidis in the United States of America. Rev Sci Tech.
1997 Aug; 16(2):542-53.
36.Hong Y, Berrang ME, Liu T, Hofacre CL, Sanchez S, Wang L,
Maurer JJ. Rapid Detection of Campylobacter coli, C.
jejuni, and Salmonella enterica on Poultry Carcasses by
Using PCR-Enzyme-Linked Immunosorbent Assay. Appl Environ
Microbiol. 2003 Jun; 69(6):3492-9.
37.Hoorfar J, Ahrens P, Radstrom P. Automated 5' nuclease PCR
assay for identification of Salmonella enterica. J Clin
Microbiol. 2000 Sep; 38(9):3429-35.
38.Hudson CR, Garcia M, Gast RK, Maurer JJ. Determination of
close genetic relatedness of the major Salmonella
enteritidis phage types by pulsed-field gel electrophoresis
and DNA sequence analysis of several Salmonella virulence
genes. Avian Dis. 2001 Oct-Dec; 45(4):875-86.
39.Humphrey TJ, Baskerville A, Mawer S, Rowe B, Hopper S.
Salmonella enteritidis phage type 4 from the contents of
intact eggs: a study involving naturally infected hens.
Epidemiol Infect. 1989 Dec; 103(3):415-23.
40.Humphrey TJ. Contamination of egg shell and contents with
Salmonella enteritidis: a review. Int J Food Microbiol.
1994 Jan; 21(1-2):31-40.
41.James W, Etzel R, Kaplan B. FSIS assessing risk of
Salmonella enteritidis in eggs. J Am Vet Med Assoc. 1998
Jul 1; 213(1):18.
42.Jones BD, Ghori N, Falkow S. Salmonella typhimurium
initiates murine infection by penetrating and destroying
the specialized epithelial M cells of the Peyer's patches.
J Exp Med. 1994 Jul 1; 180(1):15-23.
43.Kohbata S, Yokoyama H, Yabuuchi E. Cytopathogenic effect of
salmonella typhi GIFU 10007 on M cells of murine ileal
Peyer's patches in ligated ileal loops: an ultrastructural
study. Microbiol Immunol. 1986; 30(12):1225-37.
44.Kuusi N, Nurminen M, Saxen H, Makela PH. Immunization with
major outer membrane protein (porin) preparations in
experimental murine salmonellosis: effect of
lipopolysaccharide. Infect Immun. 1981 Nov; 34(2):328-32.
45.Kuusi N, Nurminen M, Saxen H, Valtonen M, Makela PH.
Immunization with major outer membrane proteins in
experimental salmonellosis of mice. Infect Immun. 1979 Sep;
25(3):857-62.
46.Li W, Watarai S, Kodama H. Identification of possible
chicken intestinal mucosa receptors for SEF21-fimbriated
Salmonella enterica serovar Enteritidis. Vet Microbiol.
2003 Feb 2; 91(2-3):215-29.
47.Lu JJ, Perng CL, Lee SY, Wan CC. Use of PCR with universal
primers and restriction endonuclease digestions for
detection and identification of common bacterial pathogens
in cerebrospinal fluid. J Clin Microbiol. 2000 Jun; 38
(6):2076-80.
48.Lu S, Manges AR, Xu Y, Fang FC, Riley LW. Analysis of
virulence of clinical isolates of Salmonella enteritidis in
vivo and in vitro. Infect Immun. 1999 Nov; 67(11):5651-7.
49.Ludwig A, Garcia F, Bauer S, Jarchau T, Benz R, Hoppe J,
Goebel W. Analysis of the in vivo activation of hemolysin
(HLYA) from Escherichia coli. J Bacteriol. 1996 Sep; 178
(18):5422-30.
50.Ludwig A. Cytolytic toxins from gram-negative bacteria.
Microbiologia. 1996 Jun; 12(2):281-96.
51.Mandi Y, Veromaa T, Baranji K, Miczak A, Beladi I, Toivanen
P. Granulocyte-specific monoclonal antibody inhibiting
cytotoxicity reactions in the chicken. Immunobiology. 1987
May; 174(3):292-9.
52.Marchlewicz BA, Duncan JL. Lysis of erythrocytes by a
hemolysin produced by a group B Streptococcus sp. Infect
Immun. 1981 Dec; 34(3):787-94.
53.Mazodier P, Davies J. Gene transfer between distantly
related bacteria. Annu Rev Genet. 1991; 25: 147-71.
54.Miller VL, Mekalanos JJ. A novel suicide vector and its use
in construction of insertion mutations: osmoregulation of
outer membrane proteins and virulence determinants in
Vibrio cholerae requires toxR. J Bacteriol. 1988 Jun; 170
(6):2575-83.
55.Mills SD, Finlay BB. Comparison of Salmonella typhi and
Salmonella typhimurium invasion, intracellular growth and
localization in cultured human epithelial cells. Microb
Pathog. 1994 Dec; 17(6):409-23.
56.Mourino M, Munoa F, Balsalobre C, Diaz P, Madrid C, Juarez
A. Environmental regulation of alpha-haemolysin expression
in Escherichia coli. Microb Pathog. 1994 Apr; 16(4):249-59.
57.Nizet V, Gibson RL, Chi EY, Framson PE, Hulse M, Rubens CE.
Group B streptococcal beta-hemolysin expression is
associated with injury of lung epithelial cells. Infect
Immun. 1996 Sep; 64(9):3818-26.
58.Nizet V, Gibson RL, Rubens CE. The role of group B
streptococci beta-hemolysin expression in newborn lung
injury. Adv Exp Med Biol. 1997; 418:627-30.
59.Ogunniyi AD, Kotlarski I, Morona R, Manning PA. Role of
SefA subunit protein of SEF14 fimbriae in the pathogenesis
of Salmonella enterica serovar Enteritidis. Infect Immun.
1997 Feb; 65(2):708-17.
60.Ortiz-Neu C, Marr JS, Cherubin CE, Neu HC. Bone and joint
infections due to Salmonella. J Infect Dis. 1978 Dec; 138
(6):820-8.
61.Pace J, Hayman MJ, Galan JE. Signal transduction and
invasion of epithelial cells by S. typhimurium. Cell. 1993
Feb 26; 72(4):505-14.
62.Pan TM, Liu YJ. Identification of Salmonella enteritidis
isolates by polymerase chain reaction and multiplex
polymerase chain reaction. J Microbiol Immunol Infect. 2002
Sep; 35(3):147-51.
63.Rajashekara G, Munir S, Lamichhane CM, Back A, Kapur V,
Halvorson DA, Nagaraja KV. Application of recombinant
fimbrial protein for the specific detection of Salmonella
enteritidis infection in poultry. Diagn Microbiol Infect
Dis. 1998 Nov; 32(3):147-57.
64.Reckseidler SL, DeShazer D, Sokol PA, Woods DE. Detection
of bacterial virulence genes by subtractive hybridization:
identification of capsular polysaccharide of Burkholderia
pseudomallei as a major virulence determinant. Infect
Immun. 2001 Jan; 69(1):34-44.
65.Rothwell CJ, Vervelde L, Davison TF. Identification of
chicken Bu-1 alloantigens using the monoclonal antibody
AV20. Vet Immunol Immunopathol. 1996 Dec; 55(1-3):225-34.
66.Rudolph KM, Parkinson AJ, Black CM, Mayer LW. Evaluation of
polymerase chain reaction for diagnosis of pneumococcal
pneumonia. J Clin Microbiol. 1993 Oct; 31(10):2661-6.
67.Schmidt H, Beutin L, Karch H. Molecular analysis of the
plasmid-encoded hemolysin of Escherichia coli O157:H7
strain EDL 933. Infect Immun. 1995 Mar; 63(3):1055-61.
68.Solano C, Sesma B, Alvarez M, Urdaneta E, Garcia-Ros D,
Calvo A, Gamazo C. Virulent strains of Salmonella
enteritidis disrupt the epithelial barrier of Caco-2 and
HEp-2 cells. Arch Microbiol. 2001 Jan; 175(1):46-
51.
69.Tollefson L, Fedorka-Cray PJ, Angulo FJ. Public health
aspects of antibiotic resistance monitoring in the USA.
Acta Vet Scand Suppl. 1999; 92:67-75.
70.Tompkins LS, Troup N, Labigne-Roussel A, Cohen ML. Cloned,
random chromosomal sequences as probes to identify
Salmonella species. J Infect Dis. 1986 Jul; 154(1):156-62.
71.Van Poucke LS. Salmonella-TEK, a rapid screening method for
Salmonella species in food. Appl Environ Microbiol. 1990
Apr; 56(4):924-7.
72.Van Zijderveld FG, van Zijderveld-van Bemmel AM, Brouwers
RA, de Vries TS, Landman WJ, de Jong WA. Serological
detection of chicken flocks naturally infected with
Salmonella enteritidis, using an enzyme-linked
immunosorbent assay based on monoclonal antibodies against
the flagellar antigen. Vet Q. 1993 Dec; 15(4):135-7.
73.Vatopoulos AC, Mainas E, Balis E, Threlfall EJ,
Kanelopoulou M, Kalapothalki V, Malamou-Lada H, Legakis NJ.
Molecular epidemiology of ampicillin-resistant clinical
isolates of Salmonella enteritidis. J Clin Microbiol. 1994
May; 32(5):1322-5.
74.Whyte P, Mc Gill K, Collins JD, Gormley E. The prevalence
and PCR detection of Salmonella contamination in raw
poultry. Vet Microbiol. 2002 Oct 2; 89(1):53-60.
75.Wyatt GM, Lee HA, Dionysiou S, Morgan MR, Stokely DJ, Al-
Hajji AH, Richards J, Sillis AJ, Jones PH. Comparison of a
microtitration plate ELISA with a standard cultural
procedure for the detection of Salmonella spp. in chicken.
J Food Prot. 1996 Mar; 59(3):238-43.
76.Yamamoto S, Terai A, Yuri K, Kurazono H, Takeda Y, Yoshida
O. Detection of urovirulence factors in Escherichia coli by
multiplex polymerase chain reaction. FEMS Immunol Med
Microbiol. 1995 Oct; 12(2):85-90.
77.Yeh KS, Tsai CE, Chen SP, Liao CW. Comparison between VIDAS
automatic enzyme-linked fluorescent immunoassay and culture
method for Salmonella recovery from pork carcass sponge
samples. J Food Prot. 2002 Oct; 65(10):1656-9.
78.Yokoyama H, Umeda K, Peralta RC, Hashi T, Icatlo FC Jr,
Kuroki M, Ikemori Y, Kodama Y. Oral passive immunization
against experimental salmonellosis in mice using chicken
egg yolk antibodies specific for Salmonella enteritidis and
S. typhimurium. Vaccine. 1998 Feb; 16(4):388-93.
79.Zanetti G, Heumann D, Gerain J, Kohler J, Abbet P, Barras
C, Lucas R, Glauser MP, Baumgartner JD. Cytokine production
after intravenous or peritoneal gram-negative bacterial
challenge in mice. Comparative protective efficacy of
antibodies to tumor necrosis factor-alpha and to
lipopolysaccharide. J Immunol. 1992 Mar 15; 148(6):1890-7.
80.Zhang-Barber L, Turner AK, Barrow PA. Vaccination for
control of Salmonella in poultry. Vaccine. 1999 Jun 4; 17
(20-21):2538-45.
81.醫用微生物學 P.312-319,合記出版社,丁明哲著。
82.科學月刊 1996年4月316期。
83.中國畜牧雜誌第56冊. 再談雞蛋中之沙門氏桿菌。
84.簡明微生物學P.222-236,華杏出版社,詹前朕著。