簡易檢索 / 詳目顯示

研究生: 張俐雯
Chang, Li-Wen
論文名稱: 沙門氏腸炎桿菌致病因子之研究
Study on the virulence factors of Salmonella enteritidis
指導教授: 張敏政
Chang, Ming-Chung
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學研究所
Department of Biochemistry
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 151
中文關鍵詞: 沙門氏腸炎桿菌
外文關鍵詞: Salmonella enteritidis
相關次數: 點閱:54下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 沙門氏腸炎桿菌是一株人畜共通的病原菌,最常經由污染的雞肉及雞蛋而感染嬰幼兒、老年人或免疫力差的成人。Egg-associated Salmonellosis的感染案例逐年上升,最主要是因為許多Salmonella菌株都產生多重抗藥性。因此,對於疫苗的開發及尚未發現之致病機轉的研究,相對地就顯的非常重要。故本實驗室積極的希望能從S.enteritidis的基因庫中篩選出與免疫保護及感染致病相關的重要因子,以期望能發展成疫苗或研究未知之致病機轉。
    之前實驗室由構築好的S. enteritidis的基因庫中,利用綿羊血培養基去進行致病因子的篩選,共篩選出兩種具有溶血活性的基因,分別命名為outer membrane protein p1 (ompp1) 及hemolytic activity gene (hly)。OMP暴露在菌體的表面,可以被抗體所認識而成為一個好的免疫原。經由Cell fractionation的分析,證實此OMPP1蛋白質是位於outer membrane fraction,因此認為它可能與寄主的immune response有關;而hemolysin-like protein具有一段signal peptide,會將此蛋白質鑲嵌在膜上或分泌至細胞外,所以也具有成為免疫原的潛力。於是進行此二段基因的構築及表現,並進一步以動物實驗模式觀察主動免疫的保護效果,初步發現外膜蛋白P1(OMPP1)約具有60%的保護效果,而溶血活性蛋白(HLY)則只有10%的保護效果。另外在被動免疫上,先利用腹腔注射的方法打入175 c.f.u.的S.enteritidis,經3小時後使細菌循環到全身,再利用尾靜脈注射打入200ug的抗體,做緊急的保護中和效果,初步發現外膜蛋白P1(OMPP1)約具80%的治療效果,而溶血活性蛋白(HLY)則沒有治療效果。因此我們認為外膜蛋白P1(OMPP1)蛋白質對動物體有良好的保護(60%)及治療(80%)效果,具有發展成為疫苗的潛力。
    為了使我們能更瞭解ompp1 gene在Salmonella致病能力上所扮演的角色,於是我們針對ompp1 gene,利用同源染色體重組之特性進行基因剔除(gene knockout),並由 PCR及Western blotting的結果確認無誤後,再以細胞培養實驗去證實,將Salmonella 的ompp1 gene 破壞之後,此突變株對HeLa cell 的adhesion抑制達70%,對invasion的抑制達73%;另外再以BALB/C小鼠測試突變株與野生株半致死率(LD50)的差異,由結果顯示,ompp1 gene在Salmonella的致病感染上應該有其重要性。

    Salmonella enteritidis is a facultative intracellular pathogen that can cause disease in humans and animals. Poultry meat and eggs are considered to be the major source of infection for infant, elderly, and those with impaired immune system. Egg associated salmonellosis have been raised because many strains of salmonella have become resistant to several of the antibiotics traditionally used to treat it. Today, modern chemotherapy must consider the treatment of antibiotics resistance and target factors that are required for the pathogenesis of bacterial infection. The purpose of this research is to characterize the virulence-associate factors and elucidate their roles in the pathogenesis of S.enteritidis.
    In our previous study, two hemolytic activity genes have been cloned from genomic library of S.enteritidis (Sal-5). One gene encodes outer membrane protein P1 (OMPP1), and the other encodes hemolysin like protein (HLY). OMP are exposed on the surface of the bacterial cell and they can serve as phage receptors and react with antibodies. In this study, the results of cell fraction experiment indicated that OMPP1 is an outer membrane associated protein. HLY seems to have a cleavable N-terminal signal peptide and may be anchored in the membrane or secreted to the medium by prediction of computer. With their physical and biological characteristics, OMPP1 and HLY may be used successfully as vaccine antigens and good immunogens.
    To evaluate whether OMPP1 and HLY could confer protective immunity against S.enteritidis infection or not, active and passive immunization experiments were performed. Mice immunized with OMPP1 showed 60% protection and immunized with HLY showed 20%protection against challenged with 373 c.f.u. of S.enteritidis, compared to a 90% mortality in mice immunized with BSA. For passive immunization experiment, mice challenged intra-peritoneally (I.P.) with 175 c.f.u. of S.enteritidis were intra-venous (I.V.) treated with 200ul anti-OMPP1 or anti-HLY antibody one times a day for five consecutive days. Antibody treatment resulted in a survival rate of 80% for using anti-OMPP1 antibody and 10% for using anti-HLY antibody, compared to a 90% mortality in mice treated with pre-immune antibody. These results indicated that OMPP1 is a good immunogen and can provide the protective effects in both active and passive immunization.
    In order to study the role of OMPP1 in the pathogenesis of Salmonella infection, ompp1-deficient strain was constructed by using integrated plasmid to disrupt the original ompp1 gene. In vitro studies of bacterial adhesion and invasion on intestinal epithelial cell lines and epithelial monolayer were performed. Compared to wild-type strain, the ompp1 mutant exhibited a 70% decrease in adhesion ability and a 73%decrease in invasion ability. These results indicated that OMPP1 is involved in cellular adhesion and invasion, and plays an important role of Salmonella in natural infection route.

    考試合格證明 I 中文摘要 II 英文摘要 IV 致謝 VI 目錄 VIII 圖目錄 XI 表目錄 XIV 縮寫檢索表 XV 第一章、沙門氏腸炎桿菌致病因子於動物實驗之研究 1 緒論 2 一、沙門氏腸炎桿菌之基本介紹 2 二、研究動機 6 材料與方法 8 一、使用之菌株、載體及培養基 8 二、染色體DNA之抽取 9 三、聚合酵素連鎖反應 10 四、以電泳法回收DNA 12 五、製備少量質體DNA 13 六、限制酵素切割DNA 14 七、接合反應 15 八、大腸桿菌之形質轉換 16 九、外膜蛋白P1及溶血活性基因序列與pET載體融合蛋白之表現 17 十、SDS-PAGE之蛋白質分子量分析 18 十一、Ompp1及Hly融合蛋白之純化 20 十二、抗體製備 22 十三、蛋白質濃度的量 23 十四、西方點漬法 23 十五、Protein A-conjuated resin 純化免疫球蛋白 25 十六、細胞區分法 26 十七、沙門氏腸炎桿菌野生株LD50(腹腔注射)之測試 29 十八、實驗動物模式之主動、被動免疫 31 結果 33 討論 43 第二章 OMPP1疫苗的廣效性及發展快速檢測探針可行性之探討 46 緒論 47 一、OMPP1疫苗的廣效性之探討 47 二、發展ompp1快速檢驗探針可行性之探討 47 材料與方法 49 一、使用之菌株、載體及培養基 49 二、利用Western blotting鑑定OMPP1蛋白質在不同細菌的表現情形50 三、發展ompp1快速檢測探針可行性之探討 51 結果 53 討論 56 第三章 沙門氏腸炎桿菌之ompp1基因缺失對其致病能力之影 58 緒論 59 材料與方法 61 一、使用之菌株、載體及培養基 61 二、ompp1之同源基因與Trk載體之構築 62 三、基因突變株之構築與篩選 65 四、聚合酵素連鎖反應 66 五、利用Western blotting鑑定突變株之OMPP1蛋白質是否已不存在68 六、In vitro adherence inhibition assay 69 七、Cellular invasion assay 73 八、S1-296 w.t.與突變株LD50之測試 75 結果 79 討論 87 總結 90 參考文獻 92 附錄 150 自述 151

    1.Altekruse SF, Swerdlow DL. The changing epidemiology of
    foodborne diseases. Am J Med Sci. 1996 Jan; 311(1):23-9.
    2.Altmeyer RM, McNern JK, Bossio JC, Rosenshine I, Finlay BB,
    Galan JE. Cloning and molecular characterization of a gene
    involved in Salmonella adherence and invasion of cultured
    epithelial cells. Mol Microbiol. 1993 Jan; 7(1):89-98.
    3.Araj GF, Chugh TD. Detection of Salmonella spp. in clinical
    specimens by capture enzyme-linked immunosorbent assay. J
    Clin Microbiol. 1987 Nov; 25(11):2150-3.
    4.Barbour EK, Hamadeh SK, Bejjani NE, Faroon OM, Eid A, Sakr
    W, Bouljihad M, Spasojevic R, Safieh-Garabedian B.
    Immunopotentiation of a developed Salmonella enterica
    serotype enteritidis vaccine by thymulin and zinc in meat
    chicken breeders. Vet Res Commun. 2001 Aug; 25(6):437-47.
    5.Baumler AJ, Hargis BM, Tsolis RM. Tracing the origins of
    Salmonella outbreaks. Science. 2000 Jan 7; 287(5450):50-2.
    6.Baumler AJ, Heffron F, Reissbrodt R. Rapid detection of
    Salmonella enterica with primers specific for iroB. J Clin
    Microbiol. 1997 May; 35(5):1224-30.
    7.Baumler AJ, Tsolis RM, Heffron F. Contribution of fimbrial
    operons to attachment to and invasion of epithelial cell
    lines by Salmonella typhimurium. Infect Immun. 1996 May; 64
    (5):1862-5.
    8.Behlau I, Miller SI. A PhoP-repressed gene promotes
    Salmonella typhimurium invasion of epithelial cells. J
    Bacteriol. 1993 Jul; 175(14):4475-84.
    9.Betley MJ, Miller VL, Mekalanos JJ. Genetics of bacterial
    enterotoxins. Annu Rev Microbiol. 1986; 40:577-605.
    10.Bhakdi S, Bayley H, Valeva A, Walev I, Walker B, Kehoe M,
    Palmer M. Staphylococcal alpha-toxin, streptolysin-O, and
    Escherichia coli hemolysin: prototypes of pore-forming
    bacterial cytolysins. Arch Microbiol. 1996 Feb; 165(2):73-9.
    11.Blackburn CW. Rapid and alternative methods for the
    detection of salmonellas in foods. J Appl Bacteriol. 1993
    Sep; 75(3):199-214.
    12.Bliska JB, Galan JE, Falkow S. Signal transduction in the
    mammalian cell during bacterial attachment and entry. Cell.
    1993 Jun 4; 73(5):903-20.
    13.Bottger EC. Rapid determination of bacterial ribosomal RNA
    sequences by direct sequencing of enzymatically amplified
    DNA. FEMS Microbiol Lett. 1989 Nov; 53(1-2):171-6.
    14.Burney DP, Fisher RD, Schaffner W. Salmonella empyema: a
    review. South Med J. 1977 Mar; 70(3):375-7.
    15.Centers for Disease Control and Prevention. Outbreaks of
    Salmonella Serotype Enteritidis Infection Associated with
    Consumption of Raw Shell Eggs -- United States, 1994-1995
    MMWR Morb Mortal Wkly Rep. 1996 Aug 30; 45(34); 737-742.
    16.Centers for Disease Control and Prevention. Summary of
    notifiable diseases, United States, 1997. MMWR Morb Mortal
    Wkly Rep. 1998 Nov 20; 46(54): ii-vii, 3-87.
    17.Chart H, Baskerville A, Humphrey TJ, Rowe B. Serological
    responses of chickens experimentally infected with
    Salmonella enteritidis PT4 by different routes. Epidemiol
    Infect. 1992 Oct; 109(2):297-302.
    18.Clark MA, Jepson MA, Simmons NL, Hirst BH. Preferential
    interactions of Salmonella typhimurium with mouse Peyer’s
    patch M cells. Res Microbiol. 1994 Sep; 145(7):543-52.
    19.Daniels JJ, Autenrieth IB, Ludwig A, Goebel W. The gene
    slyA of Salmonella typhimurium is required for destruction
    of M cells and intracellular survival but not for invasion
    or colonization of the murine small intestine. Infect
    Immun. 1996 Dec; 64(12):5075-84.
    20.Desmidt M, Ducatelle R, Haesebrouck F, de Groot PA,
    Verlinden M, Wijffels R, Hinton M, Bale JA, Allen VM.
    Detection of antibodies to Salmonella enteritidis in sera
    and yolks from experimentally and naturally infected
    chickens. Vet Rec. 1996 Mar 9; 138(10):223-6.
    21.Doran KS, Chang JC, Benoit VM, Eckmann L, Nizet V. Group B
    streptococcal beta-hemolysin/cytolysin promotes invasion of
    human lung epithelial cells and the release of interleukin-
    8. J Infect Dis. 2002 Jan 15; 185(2):196-203. Epub 2002 Jan
    03.
    22.Edwards RA, Schifferli DM, Maloy SR. A role for Salmonella
    fimbriae in intraperitoneal infections. Proc Natl Acad Sci
    U S A. 2000 Feb 1; 97(3):1258-62.
    23.Emejuru O, Jayam-Trouth A. Salmonella meningitis in
    infancy. J Natl Med Assoc. 1988 Jul; 80(7):824-5, 829.
    24.Falbo V, Pace T, Picci L, Pizzi E, Caprioli A. Isolation
    and nucleotide sequence of the gene encoding cytotoxic
    necrotizing factor 1 of Escherichia coli. Infect Immun.
    1993 Nov; 61(11):4909-14.
    25.Fukutome K, Watarai S, Mukamoto M, Kodama H. Intestinal
    mucosal immune response in chickens following intraocular
    immunization with liposome-associated Salmonella enterica
    serovar enteritidis antigen. Dev Comp Immunol. 2001 Jun-
    Jul; 25(5-6):475-84.
    26.Galan JE, Pace J, Hayman MJ. Involvement of the epidermal
    growth factor receptor in the invasion of cultured
    mammalian cells by Salmonella typhimurium. Nature. 1992 Jun
    18; 357(6379):588-9.
    27.Galdiero F, Tufano MA, Galdiero M, Masiello S, Di Rosa M.
    Inflammatory effects of Salmonella typhimurium porins.
    Infect Immun. 1990 Oct; 58(10):3183-6.
    28.Garcia-del Portillo F, Foster JW, Finlay BB. Role of acid
    tolerance response genes in Salmonella typhimurium
    virulence. Infect Immun. 1993 Oct; 61(10):4489-92.
    29.Gibson RL, Nizet V, Rubens CE. Group B streptococcal beta-
    hemolysin promotes injury of lung microvascular endothelial
    cells. Pediatr Res. 1999 May; 45(5 Pt 1):626-34.
    30.Gill GV. Endocarditis caused by Salmonella enteritidis. Br
    Heart J. 1979 Sep; 42(3):353-4.
    31.Guard-Petter J. Variants of smooth Salmonella enterica
    serovar Enteritidis that grow to higher cell density than
    the wild type are more virulent. Appl Environ Microbiol.
    1998 Jun; 64(6):2166-72.
    32.Herrero M, de Lorenzo V, Timmis KN. Transposon vectors
    containing non-antibiotic resistance selection markers for
    cloning and stable chromosomal insertion of foreign genes
    in gram-negative bacteria. J Bacteriol. 1990 Nov; 172
    (11):6557-67.
    33.Hesse DG, Tracey KJ, Fong Y, Manogue KR, Palladino MA Jr,
    Cerami A, Shires GT, Lowry SF. Cytokine appearance in human
    endotoxemia and primate bacteremia. Surg Gynecol Obstet.
    1988 Feb; 166(2):147-53.
    34.Hogue A, White P, Guard-Petter J, Schlosser W, Gast R, Ebel
    E, Farrar J, Gomez T, Madden J, Madison M, McNamara AM,
    Morales R, Parham D, Sparling P, Sutherlin W, Swerdlow D.
    Epidemiology and control of egg-associated Salmonella
    enteritidis in the United States of America. Rev Sci Tech.
    1997 Aug; 16(2):542-53.
    35.Hogue A, White P, Guard-Petter J, Schlosser W, Gast R, Ebel
    E, Farrar J, Gomez T, Madden J, Madison M, McNamara AM,
    Morales R, Parham D, Sparling P, Sutherlin W, Swerdlow D.
    Epidemiology and control of egg-associated Salmonella
    enteritidis in the United States of America. Rev Sci Tech.
    1997 Aug; 16(2):542-53.
    36.Hong Y, Berrang ME, Liu T, Hofacre CL, Sanchez S, Wang L,
    Maurer JJ. Rapid Detection of Campylobacter coli, C.
    jejuni, and Salmonella enterica on Poultry Carcasses by
    Using PCR-Enzyme-Linked Immunosorbent Assay. Appl Environ
    Microbiol. 2003 Jun; 69(6):3492-9.
    37.Hoorfar J, Ahrens P, Radstrom P. Automated 5' nuclease PCR
    assay for identification of Salmonella enterica. J Clin
    Microbiol. 2000 Sep; 38(9):3429-35.
    38.Hudson CR, Garcia M, Gast RK, Maurer JJ. Determination of
    close genetic relatedness of the major Salmonella
    enteritidis phage types by pulsed-field gel electrophoresis
    and DNA sequence analysis of several Salmonella virulence
    genes. Avian Dis. 2001 Oct-Dec; 45(4):875-86.
    39.Humphrey TJ, Baskerville A, Mawer S, Rowe B, Hopper S.
    Salmonella enteritidis phage type 4 from the contents of
    intact eggs: a study involving naturally infected hens.
    Epidemiol Infect. 1989 Dec; 103(3):415-23.
    40.Humphrey TJ. Contamination of egg shell and contents with
    Salmonella enteritidis: a review. Int J Food Microbiol.
    1994 Jan; 21(1-2):31-40.
    41.James W, Etzel R, Kaplan B. FSIS assessing risk of
    Salmonella enteritidis in eggs. J Am Vet Med Assoc. 1998
    Jul 1; 213(1):18.
    42.Jones BD, Ghori N, Falkow S. Salmonella typhimurium
    initiates murine infection by penetrating and destroying
    the specialized epithelial M cells of the Peyer's patches.
    J Exp Med. 1994 Jul 1; 180(1):15-23.
    43.Kohbata S, Yokoyama H, Yabuuchi E. Cytopathogenic effect of
    salmonella typhi GIFU 10007 on M cells of murine ileal
    Peyer's patches in ligated ileal loops: an ultrastructural
    study. Microbiol Immunol. 1986; 30(12):1225-37.
    44.Kuusi N, Nurminen M, Saxen H, Makela PH. Immunization with
    major outer membrane protein (porin) preparations in
    experimental murine salmonellosis: effect of
    lipopolysaccharide. Infect Immun. 1981 Nov; 34(2):328-32.
    45.Kuusi N, Nurminen M, Saxen H, Valtonen M, Makela PH.
    Immunization with major outer membrane proteins in
    experimental salmonellosis of mice. Infect Immun. 1979 Sep;
    25(3):857-62.
    46.Li W, Watarai S, Kodama H. Identification of possible
    chicken intestinal mucosa receptors for SEF21-fimbriated
    Salmonella enterica serovar Enteritidis. Vet Microbiol.
    2003 Feb 2; 91(2-3):215-29.
    47.Lu JJ, Perng CL, Lee SY, Wan CC. Use of PCR with universal
    primers and restriction endonuclease digestions for
    detection and identification of common bacterial pathogens
    in cerebrospinal fluid. J Clin Microbiol. 2000 Jun; 38
    (6):2076-80.
    48.Lu S, Manges AR, Xu Y, Fang FC, Riley LW. Analysis of
    virulence of clinical isolates of Salmonella enteritidis in
    vivo and in vitro. Infect Immun. 1999 Nov; 67(11):5651-7.
    49.Ludwig A, Garcia F, Bauer S, Jarchau T, Benz R, Hoppe J,
    Goebel W. Analysis of the in vivo activation of hemolysin
    (HLYA) from Escherichia coli. J Bacteriol. 1996 Sep; 178
    (18):5422-30.
    50.Ludwig A. Cytolytic toxins from gram-negative bacteria.
    Microbiologia. 1996 Jun; 12(2):281-96.
    51.Mandi Y, Veromaa T, Baranji K, Miczak A, Beladi I, Toivanen
    P. Granulocyte-specific monoclonal antibody inhibiting
    cytotoxicity reactions in the chicken. Immunobiology. 1987
    May; 174(3):292-9.
    52.Marchlewicz BA, Duncan JL. Lysis of erythrocytes by a
    hemolysin produced by a group B Streptococcus sp. Infect
    Immun. 1981 Dec; 34(3):787-94.
    53.Mazodier P, Davies J. Gene transfer between distantly
    related bacteria. Annu Rev Genet. 1991; 25: 147-71.
    54.Miller VL, Mekalanos JJ. A novel suicide vector and its use
    in construction of insertion mutations: osmoregulation of
    outer membrane proteins and virulence determinants in
    Vibrio cholerae requires toxR. J Bacteriol. 1988 Jun; 170
    (6):2575-83.
    55.Mills SD, Finlay BB. Comparison of Salmonella typhi and
    Salmonella typhimurium invasion, intracellular growth and
    localization in cultured human epithelial cells. Microb
    Pathog. 1994 Dec; 17(6):409-23.
    56.Mourino M, Munoa F, Balsalobre C, Diaz P, Madrid C, Juarez
    A. Environmental regulation of alpha-haemolysin expression
    in Escherichia coli. Microb Pathog. 1994 Apr; 16(4):249-59.
    57.Nizet V, Gibson RL, Chi EY, Framson PE, Hulse M, Rubens CE.
    Group B streptococcal beta-hemolysin expression is
    associated with injury of lung epithelial cells. Infect
    Immun. 1996 Sep; 64(9):3818-26.
    58.Nizet V, Gibson RL, Rubens CE. The role of group B
    streptococci beta-hemolysin expression in newborn lung
    injury. Adv Exp Med Biol. 1997; 418:627-30.
    59.Ogunniyi AD, Kotlarski I, Morona R, Manning PA. Role of
    SefA subunit protein of SEF14 fimbriae in the pathogenesis
    of Salmonella enterica serovar Enteritidis. Infect Immun.
    1997 Feb; 65(2):708-17.
    60.Ortiz-Neu C, Marr JS, Cherubin CE, Neu HC. Bone and joint
    infections due to Salmonella. J Infect Dis. 1978 Dec; 138
    (6):820-8.
    61.Pace J, Hayman MJ, Galan JE. Signal transduction and
    invasion of epithelial cells by S. typhimurium. Cell. 1993
    Feb 26; 72(4):505-14.
    62.Pan TM, Liu YJ. Identification of Salmonella enteritidis
    isolates by polymerase chain reaction and multiplex
    polymerase chain reaction. J Microbiol Immunol Infect. 2002
    Sep; 35(3):147-51.
    63.Rajashekara G, Munir S, Lamichhane CM, Back A, Kapur V,
    Halvorson DA, Nagaraja KV. Application of recombinant
    fimbrial protein for the specific detection of Salmonella
    enteritidis infection in poultry. Diagn Microbiol Infect
    Dis. 1998 Nov; 32(3):147-57.
    64.Reckseidler SL, DeShazer D, Sokol PA, Woods DE. Detection
    of bacterial virulence genes by subtractive hybridization:
    identification of capsular polysaccharide of Burkholderia
    pseudomallei as a major virulence determinant. Infect
    Immun. 2001 Jan; 69(1):34-44.
    65.Rothwell CJ, Vervelde L, Davison TF. Identification of
    chicken Bu-1 alloantigens using the monoclonal antibody
    AV20. Vet Immunol Immunopathol. 1996 Dec; 55(1-3):225-34.
    66.Rudolph KM, Parkinson AJ, Black CM, Mayer LW. Evaluation of
    polymerase chain reaction for diagnosis of pneumococcal
    pneumonia. J Clin Microbiol. 1993 Oct; 31(10):2661-6.
    67.Schmidt H, Beutin L, Karch H. Molecular analysis of the
    plasmid-encoded hemolysin of Escherichia coli O157:H7
    strain EDL 933. Infect Immun. 1995 Mar; 63(3):1055-61.
    68.Solano C, Sesma B, Alvarez M, Urdaneta E, Garcia-Ros D,
    Calvo A, Gamazo C. Virulent strains of Salmonella
    enteritidis disrupt the epithelial barrier of Caco-2 and
    HEp-2 cells. Arch Microbiol. 2001 Jan; 175(1):46-
    51.
    69.Tollefson L, Fedorka-Cray PJ, Angulo FJ. Public health
    aspects of antibiotic resistance monitoring in the USA.
    Acta Vet Scand Suppl. 1999; 92:67-75.
    70.Tompkins LS, Troup N, Labigne-Roussel A, Cohen ML. Cloned,
    random chromosomal sequences as probes to identify
    Salmonella species. J Infect Dis. 1986 Jul; 154(1):156-62.
    71.Van Poucke LS. Salmonella-TEK, a rapid screening method for
    Salmonella species in food. Appl Environ Microbiol. 1990
    Apr; 56(4):924-7.
    72.Van Zijderveld FG, van Zijderveld-van Bemmel AM, Brouwers
    RA, de Vries TS, Landman WJ, de Jong WA. Serological
    detection of chicken flocks naturally infected with
    Salmonella enteritidis, using an enzyme-linked
    immunosorbent assay based on monoclonal antibodies against
    the flagellar antigen. Vet Q. 1993 Dec; 15(4):135-7.
    73.Vatopoulos AC, Mainas E, Balis E, Threlfall EJ,
    Kanelopoulou M, Kalapothalki V, Malamou-Lada H, Legakis NJ.
    Molecular epidemiology of ampicillin-resistant clinical
    isolates of Salmonella enteritidis. J Clin Microbiol. 1994
    May; 32(5):1322-5.
    74.Whyte P, Mc Gill K, Collins JD, Gormley E. The prevalence
    and PCR detection of Salmonella contamination in raw
    poultry. Vet Microbiol. 2002 Oct 2; 89(1):53-60.
    75.Wyatt GM, Lee HA, Dionysiou S, Morgan MR, Stokely DJ, Al-
    Hajji AH, Richards J, Sillis AJ, Jones PH. Comparison of a
    microtitration plate ELISA with a standard cultural
    procedure for the detection of Salmonella spp. in chicken.
    J Food Prot. 1996 Mar; 59(3):238-43.
    76.Yamamoto S, Terai A, Yuri K, Kurazono H, Takeda Y, Yoshida
    O. Detection of urovirulence factors in Escherichia coli by
    multiplex polymerase chain reaction. FEMS Immunol Med
    Microbiol. 1995 Oct; 12(2):85-90.
    77.Yeh KS, Tsai CE, Chen SP, Liao CW. Comparison between VIDAS
    automatic enzyme-linked fluorescent immunoassay and culture
    method for Salmonella recovery from pork carcass sponge
    samples. J Food Prot. 2002 Oct; 65(10):1656-9.
    78.Yokoyama H, Umeda K, Peralta RC, Hashi T, Icatlo FC Jr,
    Kuroki M, Ikemori Y, Kodama Y. Oral passive immunization
    against experimental salmonellosis in mice using chicken
    egg yolk antibodies specific for Salmonella enteritidis and
    S. typhimurium. Vaccine. 1998 Feb; 16(4):388-93.
    79.Zanetti G, Heumann D, Gerain J, Kohler J, Abbet P, Barras
    C, Lucas R, Glauser MP, Baumgartner JD. Cytokine production
    after intravenous or peritoneal gram-negative bacterial
    challenge in mice. Comparative protective efficacy of
    antibodies to tumor necrosis factor-alpha and to
    lipopolysaccharide. J Immunol. 1992 Mar 15; 148(6):1890-7.
    80.Zhang-Barber L, Turner AK, Barrow PA. Vaccination for
    control of Salmonella in poultry. Vaccine. 1999 Jun 4; 17
    (20-21):2538-45.
    81.醫用微生物學 P.312-319,合記出版社,丁明哲著。
    82.科學月刊 1996年4月316期。
    83.中國畜牧雜誌第56冊. 再談雞蛋中之沙門氏桿菌。
    84.簡明微生物學P.222-236,華杏出版社,詹前朕著。

    下載圖示 校內:2004-08-07公開
    校外:2004-08-07公開
    QR CODE