| 研究生: |
郭家華 Kuo, Chia-Hua |
|---|---|
| 論文名稱: |
利用擬真三維地層模擬探討南市172線溫泉公路邊坡穩定分析之研究 Application of the 3D Stratigraphic Simulation to Slope Stability Analysis in the Tainan County Highway 172 |
| 指導教授: |
陳昭旭
Chen, Chao-Shi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 169 |
| 中文關鍵詞: | 南市172線 、降雨入滲 、數值模擬 、FLAC3D 、三維邊坡穩定性分析 |
| 外文關鍵詞: | the Tainan County Highway 172, Unsaturated infiltration, Numerical Simulation, FLAC3D, 3D Slope Stability Analysis |
| 相關次數: | 點閱:102 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了探討南市172線42k+300處邊坡在不同降雨強度下的三維邊坡穩定分析,本研究使用GMS (Groundwater Modeling System)建立研究區域的三維地質模型及三種不同時間點之地下水位面,並以2022年4月地下水位面進行三種不同降雨強度的降雨入滲模擬,進而探討此邊坡之穩定性。此外,本研究使用FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions)中內建的FISH語言編寫飽和-不飽和滲流場模型,透過基質吸力的變化去修正不飽和土壤的滲透係數與有效應力場,模擬不飽和降雨入滲行為,本研究以SCS曲線號碼法(Soil Conservation Service Curve Number)設計邊坡的有效降雨量,以2022年4月水位面作為初始水位進行三種不同降雨強度(100、200、350 mm/day)模擬,進而探討其三維邊坡穩定分析。並將此區域內的民間顧問公司監測資料與本研究模擬結果進行比較,檢視兩者間的吻合度,以此驗證模型的可靠性。
三種不同時間點水位的模擬結果顯示:2022年1月水位的民宅區域安全係數約為1.5~1.55,4月水位的民宅區域安全係數約為1.45~1.55,而7月水位的民宅區域安全係數約為1.40~1.50,其最大剪應變率隨著地下水位面上升逐漸提高。而三種不同降雨強度入滲的模擬結果顯示水位約上升0.20~2.06 m,入滲將造成局部不飽和帶的變化與整體水位抬升,使有效應力和剪力強度下降,而造成整體安全係數的降低。
To discuss the stability of the slope at 42k+300 of County Highway 172 in Tainan City under different rainfall intensities, a three-dimensional geologic model of the study area and groundwater levels at three different time points were developed using the GMS (Groundwater Modeling System), and rainfall infiltration simulations with three different rainfall intensities were carried out on the groundwater level in April 2022 to investigate the stability of this slope. In addition, three different rainfall intensities were used to simulate the rainfall infiltration at the groundwater table in April 2022 to investigate the stability of the slope.
In this study, the effective rainfall on the slope was designed by the SCS curve number method (Soil Conservation Service Curve Number), and three-dimensional slope stability analysus were conducted with three different rainfall intensities. The reliability of the model was verified by comparing the monitoring data of civil consultants in the region with the simulation results of this study to check the agreement between the two.
The simulation results of the water level at three different time points show that in 2022, the coefficient of safety of the residential area at the January water level is about 1.5~1.55, the coefficient of safety of the residential area at the April water level is about 1.45~1.55, and the coefficient of safety of the residential area at the July water level is about 1.40~1.50, whose maximum shear strain variability is gradually increasing along with the increase of the groundwater table surface. The simulation results for the three different rainfall intensities show that the water level rises by about 0.20 to 2.06 m. The increase in water level leads to a decrease in the overall safety coefficient.
Azocar, K., Hazzard, J., “The Influence of curvature on the stability of rock slopes.” Paper presented at the 13th ISRM International Congress of Rock Mechanics, 2015.
Bishop, A. W., “The principle of effective stress.” Teknisk ukeblad, 39, pp.859-863, 1959.
Bodman, G. B., Colman, E., “Moisture and energy conditions during downward entry of water into soils.” Soil Science Society of America Journal, 8(C), pp.116-122, 1944.
Brönnimann, C. S., “Effect of Groundwater on Landslide Triggering.” EPFL Scientific Publication, 2011.
Brooks, R. H., and Corey, A. T., “Hydraulic Properties of Porous Media.” Hydrology Paper, Vol. 3, Colorado State University, Fort Collins, 1964.
Brown, C. B., and King, I. P., “Automatic embankment analysis: equilibrium and instability conditions.” Geotechnique, 16(3), pp.209-219, 1966.
Buckingham, E., “Studies on the Movement of Soil Moisture.” Bull. 38. U.S. Dept. of Agr. Bureau of Soils, Washington, D.C, 1907.
Chen, C. Y., and Wu, W. C., “Combined Effect of Rainfall Seepage and Seismic Shaking on Slope Stability by Using a Three-Dimensional Stability Analysis.” International Journal of Engineering and Technology, Vol. 11, 2019.
Chen, L. K., Chang, C. H., Liu, C. H., Ho, J. Y., “Application of a three-dimensional deterministic model to assess potential landslides, a case study: Antong Hot Spring Area in Hualien, Taiwan.” Water, 12(2), 2020.
Croney, D., Coleman, J., “Soil thermodynamics applied to the movement of moisture in road foundations.”, Vol. 3, pp.163-177, 1948.
Dawson, E. M., Roth, W. H., and Drescher, A., “Slope stability analysis by strength reduction.” Geotechnique, 49(6), pp.835-840, 1999.
Dingwall, J. C., and Scrivner, F. H., “Application of the elastic theory to highway embankments by use of difference equations.” In Proceedings, Highway Research Board, Vol. 33, pp.476-481, 1954.
Duncan, J. M., and Wright, S. G., “The accuracy of equilibrium methods of slope stability analysis.” Engineering geology, 16(1-2), pp.5-17, 1980.
Fellenius, W., ”Erdstatische Berechnungen mit Reibung und Kohasion.“ Ernst & Sohn, Berlin, 1927.
Fredlund, D. G., Krahn, J., and Pufahl, D. E., “The Relationship between Limit Equilibrium Slope Stability Methods” Proceedings of the International Conference on Soil Mechanics and Foundation Engineering, Vol, 3, pp.409-416, 1981.
Fredlund, D. G., Morgenstern, N. R., Widger, R., “The shear strength of unsaturated soils.” Canadian geotechnical journal, 15(3), pp.313-321, 1978.
Fredlund, D. G., Rahardjo, H., “Soil mechanics for unsaturated soils:” John Wiley & Sons, 1993.
Fredlund, D. G., Xing, A., “Equations for the soil-water characteristic curve.” Canadian geotechnical journal, 31(4), pp.521-532, 1994.
Fredlund, D. G., Xing, A., Fredlund, M. D., Barbour, S., “The relationship of the unsaturated soil shear strength to the soil-water characteristic curve.” Can. Geotech. J.,33, pp.440–448, 1996.
Fredlund, M. D., Fredlund, D. G., Zhang, L., “Moving from 2D to a 3D unsaturated slope stability analysis.” PanAm Unsaturated Soils, pp.136-145, 2017.
Gardner, W. R., “Some Steady State Solutions of the Unsaturated Moisture Flow Equation with Application to Evaporation from a Water Table.” Soil Science, 85, pp.228-232, 1958.
Giam, S. K., and Donald, I. B., “Determination of Critical Slip Surfaces for Slopes via Stress-Strain Calculations,” Proceedings of the Fifth Australia-New Zealand Conference on Geomechanics, Sydney, Australia, pp.461-464, 1988.
Green, W. H., Ampt, G., “Studies on Soil Phyics.” The Journal of Agricultural Science, 4(1), pp.1-24, 1911.
Guo, J., Xu, M., and Zhao, Y., “Study on Reactivation and Deformation Process of XierGuazi Ancient-landslide in Heishui Reservoir of Southwestern China.” Engineering Geology for Society and Territory-volume 2, pp.1135-1141, 2015.
Haines, W. B., “Studies in the physical properties of soil.” V: The hysteresis effect in capillary properties and the modes of water distribution associated therewith. Journal of Agricultural Science, 20, pp.97–116, 1930.
Islam, S., and Rizvi, Z. H., “Static analysis of Mansa Devi hill landslide using FLAC3D.” Energy Geotechnics, pp.139-142, 2016.
Janbu, N., “Slope Stability Computations.” Embankment-Dam Engineering, Casagrande Volume, Hirschfeld, R. C. and Poulos, S. J. (eds.), John Wiley and Sons, pp.47-86, 1973.
Khalili, N., and Khabbaz, M. H., “A Unique Relationship for χ for the Determination of the Shear Strength of Unsaturated Soils.” Geotechnique, 48(2), pp.1-7, 1998.
Krahn, J., and Fredlund, D. G., “On total matric and osmotic suction.” Soil Science, 115(5). pp.339- 348, 1972.
Lin, M. L., and Hung, J. J., “The influence of moisture content on mechanical properties of some sedimentary rocks in Taiwan.” Proc. of the 7th Southeast Asian Geotechnical Conference, Taipei, Taiwan, 1982.
Lorig, L., Varona, P., “Rock slope engineering.” London and New York, pp.218-244, 2007.
Lu, N., and Likos, W. J., “Unsaturated Soil Mechanics.” John Wiley & Sons, Inc., Hoboken, pp.30-45, 2004.
Lu, N., and Godt, J. W., “Hillslope Hydrology and Stability.” Cambridge University Press, 2013.
Lu, N., Godt, J. W., Wu, D. T., “A closed‐form equation for effective stress in unsaturated soil.” Water Resources Research, 46(5), 2010.
Lumb, P., “Slope failures in Hong Kong.” Quarterly Journal of Engineering Geology, 8(1), pp.31-65, 1975.
Matsui, T., and San, K. C., “Finite element slope stability analysis by shear strength reduction technique.” Soils and foundations, 32(1), pp.59-70, 1992.
Mein, R. G., and Larson, C.L., “Modeling Infiltration during a Steady Rain.” Water Resources Research,9, pp.384-394, 1973.
Morgenstern, N. R., and Price, V. E., “The Analysis of the Stability of General Slip Surfaces.” Geotechnique, Vol. 15, No. 1, pp.79-93, 1965.
Sarma, S. K., “Stability Analysis of Embankments and Slopes.” J. Geotech. Engrg. Div, ASCE, Vol. 105, No. 12, pp.1511-1524, 1974.
Selby, M. J., “Hillslope Materials and Processes.” Oxford University Press, 1982.
Spencer, E., “A Method of Analysis of the Stability of Embankments Assuming Parallel Interslice Forces,” Geotechnique, London, U.K., Vol. 17, No. 1, pp.11-26, 1967.
Terlien, M. T. J., “Modelling spatial and temporal variations in rainfall-triggered landslides.”, Enschede, Netherlands: ITC Publ. Press, pp.254, 1996.
U.S. Geological Survey, “U.S. Geological Survey Open-File Report 2004-1352.” U.S.G.S, 2004.
Ugai, K., “A Method of Calculation of Total Factor of Safety of Slopes by Elaso-Plastic FEM.”, Soils and Foundations, Vol. 29, No. 2, pp.190-195, 1989.
Ugai, K., and Leshchinsky, D. O. V., “Three-dimensional limit equilibrium and finite element analyses: a comparison of results.” Soils and foundations, 35(4), pp.1-7, 1995.
Van Genuchten, M. T., “A Closed Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils.” Soil Science Society of America Journal, 44, pp.892-898, 1980.
Vanapalli, S. K., Fredlund, D. G., and Pufahl, D. E., “The Influence of Soil Structure and Stress History on the Soil-Water Characteristics of a Compacted Till.” Geotechnique, 49(2), pp.143-159, 1999.
Vanapalli, S. K., Fredlund, D., Pufahl, D., Clifton, A., “Model for the prediction of shear strength with respect to soil suction.” Canadian geotechnical journal, 33(3), pp.379-392, 1996.
Varnes, D. J., “Slope movement types and processes.” Special report, 176, pp.11-33, 1978.
Vereecken, H., Weihermüller, L., Assouline, S., Šimůnek, J., Verhoef, A., Herbst, M., Archer, N., Mohanty, B., Montzka, C., Vanderborght, J., “Infiltration from the pedon to global grid scales: An overview and outlook for land surface modeling.” Vadose Zone Journal, 18(1), 2019.
Wines, D., “A comparison of slope stability analyses in two and three dimensions.” Journal of the Southern African Institute of Mining and Metallurgy, 116(5), pp.399-406, 2016.
Wright, S. G., Kulhawy, F. G., and Duncan, J. M., ”Accuracy of equilibrium slope stability analysis.” Journal of Soil Mechanics and Foundations Div, 99, pp.783-791, 1973.
Zhang, K., “Failure Mechanism and Stability Analysis of Rock Slope.” Springer Singapore, 2020.
Zhang, Y., Zhang, J., Chen, G., Zheng, L., and Li, Y., “Effects of vertical seismic force on initiation of the Daguangbao landslide induced by the 2008 Wenchuan earthquake.” Soil Dynamics and Earthquake Engineering, 73, pp.91-102, 2015.
Zienkiewicz, O. C., Humpheson, C., and Lewis, R. W., “Associated and Non-Associated Visco-Plasticity and Plasticity in Soil Mechanics”, Geotechnique, London, U.K., Vol. 25, No. 4, pp.671-689, 1975
Zou, J. Z., Williams, D. J., and Xiong, W. L.,” Search for critical slip surfaces based on finite element method.” Canadian Geotechnical Journal, 32(2), pp.233-246, 1995.
中央地質調查所,檢自:https://www.moeacgs.gov.tw/。
台南市政府災害應變告示網,檢自:https://disaster.tainan.gov.tw/。
吳俊杰, 王成華, 李廣信,「非飽和土基質吸力對邊坡穩定的影響」,岩土力學,第25卷第5期,頁732-736,2004。
李怡萱,「以三維擬真地層模擬探討降雨入滲對邊坡穩定性影響之研究」,國立成功大學資源工程學系碩士論文,2020。
沈岡陵,「降雨特性對水力傳導異向性土壤邊坡之研究」,國立成功大學資源工程學系碩士論文,2013。
拱祥生,「不飽和紅土基質吸力行為及其在工程上之應用」,國立台灣科技大學營建工程系博士論文,2011。
拱祥生,邊坡工程論壇,2005,檢自: http://www.twce.org.tw/info/%E6%8A%80%E5%B8%AB%E5%A0%B1/365-4-1.htm。
范嘉程, 馮道偉,「以有限元素法探討暴雨時邊坡之穩定分析」,地工技術,第95期,頁61-74,2003。
范嘉程, 黃俊龍,「頁岩風化不飽和土壤之土壤水分特性曲線」,中華水土保持學報,第43卷第3期,頁197-205,2012。
高振誠,「台南市政府工務局110-112年度溪北山區市道地滑邊坡監測及預警系統建置服務工作-第一次半年監測成果報告」,青山工程顧問股份有限公司,2021。
張元良,「以剪力強度折減法進行邊坡穩定分析之研究」,國立中興大學土木工程系博士論文,2004。
張國欽, 葉信富, 林榮潤, 陳耐錦, 柯建仲, 陳榮俊,「結合鑽探與地球物理方法調查八寶寮崩塌地之水文地質特性」,中華水土保持學報,第50卷第2期,2019。
張凱鈞,「考慮降雨入滲三維邊坡穩定分析之研究-以萬山D048大規模崩塌潛勢區為例」,國立成功大學資源工程學系碩士論文,2022。
陳文聰,「172線48k崩塌機制及治理對策之研究」,中興大學水土保持學系碩士論文,2013。
陳志昌,「FLAC程式應用於土壤邊坡穩定分析」,國立中央大學應用地質系碩士論文,2001。
陳欣郁,「以地層模擬結果進行三維度邊坡穩定分析之研究」,國立成功大學資源工程學系碩士論文,2019。
黃郁婷,「剪力強度折減法應用於動態邊坡穩定分析之研究」,國立成功大學資源工程學系碩士論文,2011。
黃獻廷, 葉信富, 柯建仲,「未飽和土壤單峰與雙峰水力特性對邊坡穩定性影響之研究」,農業工程學報,第67卷第3期,2021。
楊政憲,「有限差分法應用於受地震力邊坡之變分穩定分析硏究」,臺灣大學土木工程學系碩士論文,2000。
廖瑞堂, 陳昭維, 紀宗吉, 林錫宏,「由台灣監測案例探討邊坡位移量之管理值」,地工技術,第136卷,頁59-69,2013。
廖瑞堂,「山坡地護坡工程設計」,成陽出版,2001。
潘如蕙,「剪力強度折減法應用於層狀土壤邊坡之穩定性研究」,國立成功大學資源工程學系碩士論文,2007。
蔡宜長,「應用有限元素法探討滲流對邊坡穩定性的影響」,國立中興大學土木工程系碩士論文,1989。
鍾明劍, 陳建新, 李璟芳, 黃韋凱, 譚志豪,「潛在大規模崩塌地對鄰近聚落衝擊之調查與評估方法」,中華水土保持學報,第47卷第3期,頁122-134,2016。
鍾明劍, 譚志豪, 陳勉銘, 蘇泰維,「以定率法評估邊坡山崩臨界雨量:以南勢坑為例」,中華水土保持學報,第44卷第1期,頁 66-77,2013。
羅鴻傑, 許世孟, 顧承宇, 蘇泰維, 李錦發,「降雨特性對坡地穩定性影響之關聯性研究-以義興崩塌地為例」,中興工程季刊,第106卷,頁17-25,2010。
蘇郁婷,「利用滲透試驗探討雙層土壤之滲流沖蝕行為」,臺灣大學土木工程學系碩士論文,2013。
欒茂田, 武亞軍, 年廷凱,「強度折減有限元法中邊坡失穩的塑性區判據及其應用」,防災減災工程學報,第23卷第3期,頁1-8,2005。
校內:2026-08-01公開