簡易檢索 / 詳目顯示

研究生: 江支佑
Chiang, Chih-Yu
論文名稱: 利用交錯微管道調控混合比例之研究
A study of controlling mixing ratio by using Three-Dimensional crossing microchannels
指導教授: 李定智
Lee, Denz
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 78
中文關鍵詞: 三維交錯微管道阻力比深寬比混合比例
外文關鍵詞: mixing ratio, aspect ratio, resistance ratio, 3-D crossing microchannel
相關次數: 點閱:63下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在微管道晶片中,精確調控流體的混合比例是一項重要的功能,其可應用在樣本稀釋、試劑合成、藥物調配、食品精調等方面,因此本研究的動機與目的就是希望能以很簡單的方法完成微管道中調控流體混合比例的需求。學生從過去文獻中所探討的三維交錯微管道流場特性,得知管道深寬比(aspect ratio)對入口兩道流體轉向比例會有顯著的影響,故在本文中將此轉向特性加以延伸,藉由改變管道深寬比與下游管道阻力來達到調控混合比例之目的。
    由CFDRC數值模擬軟體對各種深寬比與右管對下管阻力比的管道進行測試之後得知:當管道深寬比大於1或小於0.1,改變阻力比會明顯影響下游出口的混合比例;而當管道深寬比等於0.45時,混合比例卻幾乎不受阻力比所影響。
    憑藉著上述的結果,學生建構出在右側主管加上多個側邊出口的概念,藉由依序關閉側邊出口來達到增加阻力比的效果,如此可使混合比例從0.1、0.2依序增加到0.9。研究中並使用數值模擬工具配合流體阻力公式來得到最佳化之管道設計。管道的製作是以黃光微影製程建立管道母模,再利用PDMS對母模進行翻模完成實驗用之調控混合比例晶片。實驗方法是使用ImageJ影像處理軟體對螢光顆粒計數及染料光強度的結果進行分析來得知混合比例。從實驗數據可以看出設計完成的晶片確實可以簡單的利用堵塞出口的方法,精確有效的控制出口混合比例。
    研究後期學生進行了將調控混合比例管道結合混合器的設計,如此可讓出口具一定混合比例的產物變成均勻混合的濃度液。學生希望結合混合器的設計概念可以使本研究的內容更加完備,且適於整合在各種實驗室晶片中,成為具流體輸送、控制、混合的功能性微元件。

    How to exact control the mixing ratio of fluid in microchannel is one of the most important issue in microfluid chip. The controlled mixing fraction of fluid can be used to reach the function of sample dilution, synthesis reagents, drug deployment and so on. Therefore, the main purpose of this study was to precise control the mixing fraction of fluid by regulating a simple 3-D crossing microchannel. From the past literatures, which have shown that the aspect ratio and the resistance of channel have significant effect on the fraction of turning flow in 3-D crossing microchannel. By the feature of flow turning and we designed different resistances of the downchannel, the desired mixing ratio may received from the expected outlet of channel.
    From the numerical results of CFDRC, it can be found that when AR>1 or <0.1, the mixing ratio has significant related to the resistance ratio of the downchannel. However, if the AR=0.45, the resistance ratio of channel showed very little influence on the mixing ratio.
    Therefore, by varying the outlets of the right downchannel with open or close mode, one may make the mixing ratio changes from 0.1, 0.2 to 0.9. In addition, the formula of fluid resistance was used to obtain the optimal design and some experimental results were realized to verify the fluid phenomena. The results of experiment showed well agree with the numerical ones.
    Furthermore, a well-uniform mixing fluid can be obtained just combining the designed channel with the 3-D crossing micromixer. The combined design can be expected useful to realize the multi-function of fluid controlling, transportation and mixing to a single chip.

    摘要..........I Abstract..........III 誌謝..........V 目錄..........VI 表目錄..........IX 圖目錄..........X 符號說明..........XIII 第一章 緒論..........1 1-1 前言..........1 1-2 研究動機..........2 1-3 研究目的..........3 1-4 文獻回顧..........4 第二章 理論基礎與管道設計..........6 2-1 理論基礎..........6 2-1-1 轉向率與混合比例之關係..........6 2-1-2 流體阻力公式..........8 2-2 管道設計..........11 2-2-1 AR=0.1與0.45管道..........11 2-2-2 結合混合器的AR=0.1管道..........12 第三章 實驗與模擬系統設置..........15 3-1 黃光微影製程..........15 3-1-1 管道母模製作..........15 3-1-2 PDMS管道製作..........19 3-1-3 管道接合..........20 3-2 CO2雷射製程..........21 3-3 實驗系統架構..........21 3-3-1 實驗設備..........21 3-3-2 實驗方法..........23 3-3-3 ImageJ影像處理分析..........24 3-4 模擬系統架構..........25 3-4-1 統御方程式..........25 3-4-2 模型與格點建立..........27 3-4-3 基本假設與模擬條件設定..........27 3-4-4 模擬結果後處理..........28 第四章 結果與討論..........29 4-1 混合比例公式驗證..........29 4-2 染料濃度與光度之關係..........30 4-3 管道數值模擬結果..........31 4-4 最佳化設計之探討..........32 4-5 實驗結果與設計值比對..........34 4-5-1 AR=0.1管道..........34 4-5-2 AR=0.45管道..........35 4-5-3 誤差原因討論..........36 4-6 調控混合比例管道結合混合器之測試..........37 第五章 結論..........39 5-1 總結..........39 5-2 未來展望..........40 參考文獻..........42 自述..........78

    1.陳建人,「微機電系統技術與應用」,行政院國家科學委員會精密儀器發展中心,民國92年7月。
    2.M. S. Talary, J. P. H. Burt and P. Pethig, “Future trends in diagnosis using laboratory-on-a-chip technologies”, Parasitology, 117, S191-S203, 1998.
    3.M. A. Burns, B. N. Johnson and S. N. Brahmasandra, “An integrated nanoliter DNA analysis device”, Science, 282, 484-487, 1998.
    4.H. A. Stone, A. D. Stroock and A. Ajdari, “Engineering flows in small devices: Microfluidics toward a Lab-on-a-chip”, Annual Review of Fluid Mechanics, 36, 381-411, 2004.
    5.J. P. Brody, P. Yager, R. E. Goldstein and R. H. Austin, “Biotechnology at low Reynolds numbers”, Biophysical Journal, 71, 3430-3441, 1996.
    6.C. Yang and D. Li, “Electrokinetic effects on pressure-driven liquid fows in rectangular microchannels”, Colloid and Interface Science, 194, 95-107, 1997.
    7.白庭育,「幾何外型對三維相切微管道流場之影響」,國立成功大學航空太空工程研究所碩士論文,民國96年7月。
    8.Y. Endo, H. Tsudome, Y. Ito and H. Kato, “Micro process server”, Hitachi Technical Report, 1, 50-53, 2007.
    9.R. F. Ismagilov, D. Rosmarin, P. J. A. Kenis, D. T. Chiu, W. Zhang, H. A. Stone and G. M. Whitesides, “Pressure-driven laminar flow in tangential microchannels: an elastomeric microfluidic switch”, Analytical Chemistry, 73, 4682-4687, 2001.
    10.D. Lee, Y. T. Chen and T. Y. Bai, “Study of flows in tangentially crossing micro-channels”, Microfluidics and Nanofluidics, in press, 2009.
    11.M. Yamada and M. Seki, “Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics”, Lab on a Chip, 5, 1233-1239, 2005.
    12.N. Li, C. H. Hsu and A. Folch, “Parallel mixing of photolithographically defined nanoliter volumes using elastomeric microvalve arrays”, Electrophoresis, 26, 3758-3764, 2005.
    13.M. Yamada, T. Hirano, M. Yasudab and M. Seki, “A microfluidic flow distributor generating stepwise concentrations for highthroughput biochemical processing”, Lab on a Chip, 6, 179-184, 2006.
    14.F. M. White, “Viscous Fluid Flow”, McGraw-Hill, New York, 2006.
    15.陳佑慈,,「三維交錯微管道流場分析與應用」,國立成功大學航空太空工程研究所博士論文,民國98年7月。
    16.W. Kern and D. A. Poutinen, “Cleaning Solution Based on Hydrogen Peroxide for Use in Semiconductor Technology”, Radio Corporation of America Review, 31, 187-206, 1970.
    17.M. Shaw, D. Nawrocki, R. Hurditch and D. Johnson, “Improving the process capability of SU-8”, Microsystem Technologies, 10, 1-6, 2003.
    18.Data sheet for NANOTM SU-8 negative tone photoresists, formulations 2-25 & 50-100. Released by MicroChem. Corp.
    19.H. Xiao著,羅正忠、張鼎張譯,「半導體製程技術導論」,台灣培生教育出版股份有限公司,民國95年9月。
    20.M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer and S. R. Quake, “Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography”, Science, 288, 113-116, 2000.

    下載圖示 校內:2010-08-10公開
    校外:2010-08-10公開
    QR CODE