| 研究生: |
黃孝文 Hwang, Shiao-Wen |
|---|---|
| 論文名稱: |
主鏈含孤立電子和電洞傳送性發光團之聚芳香醚的合成與光電性質 Synthesis and Characterizations of New Poly(aryl ether)s Containing Isolated Hole and Electron Transporting Fluorophores |
| 指導教授: |
陳雲
Chen, Y. |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 198 |
| 中文關鍵詞: | 聚芳香醚 、高分子發光二極體 |
| 外文關鍵詞: | poly(aryl ether)s, polymer light emitting diodes (PLED) |
| 相關次數: | 點閱:84 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本論文將具有電子傳送能力的結構導入發光層主鏈中,用以增加高分子的電子親和性,並經由不同結構的電子傳送和電洞傳送性發光團共聚合,合成十六個含有電子傳送和電洞傳送單位的聚芳香醚高分子,進一步來探討其結構對光電性質的影響。
論文中以唑(carbazole)和含有雙苯乙烯基的3,6-唑(carbazole)、2,7-芴(fluorene)、2,6-(naphthalene)、1,4-苯(phenylene)衍生物單體,作為電洞傳送性發光團,並利用親核性取代反應與電子傳送性發光團單體(1,3,4-噁二唑衍生物或對-四聯苯衍生物)共聚合,合成一系列主鏈含孤立發光團之聚芳香醚高分子,各高分子均可溶於一般之有機溶劑,如四氯乙烷、氯仿。由光致發光(photoluminescence, PL)之研究可以發現,此一系列主鏈含孤立發光團之聚芳香醚高分子,其發光可分為三種情形:(1)高分子之發光由各發光團所貢獻,並保有孤立發光團的高發光效率;(2)在不同發光團間有能量轉移發生,高分子之發光波長和發光效率由能量受者決定;(3)高分子之發光波長比各發光團都長,這與分子鏈間的π-π交互作用有關,高分子薄膜之PL發光波長是在407~498 nm之間,屬於藍光和藍綠光的範圍內。由環伏測量(CV)證實電子是先由電子傳送區段注入,電洞先由電子傳送區段注入,因此高分子電子和電洞注入的能障,可以藉由電子、電洞傳送區段導入而同時降低。藉由各高分子單層元件的製作,可求得各高分子的電致發光光譜,其結果大部分與光致發光光譜一致,這表示電致發光與光致發光屬於同一個發光中心,另外,P1、P2、P10的電致發光光譜分別在480、475、550 nm處多出現了一明顯波峰,這是由於分子間激發態的形成所致。元件結果顯示,雖然高分子電子和電洞注入的能障確實降低,但由於孤立的結構使得電子和電洞還是必須克服各區段間的跳躍(hopping)能障,因此電子和電洞再結合不易,使得發光強度沒有預期的增加。
Abstract
In this work, electron and hole transporting fluorophores were introduced to the poly(aryl ether)s to increase the electron affinity (EA) and decrease the ionisation potential (IP). Sixteen poly(aryl ether)s consisting of alternate isolated hole-transporting and electron-transporting segments were synthesized from the nucleophilic displacement reaction of bis(fluoride) monomers with bis(phenol) monomers. The monomers of hole-transporting segments were synthesized by the Heck reaction. These hole-transporting segments include N-(2-ethylhexyl)-3,6-carbazole, N-(2-ethylhexyl)-3,6- bis(styryl)carbazole, 2,7-bis(styryl)-9,9-dihexyl-fluorene, 2,6-bis(styryl)- 1,5-dihexyloxy- naphthalene and 1,4-bis(styryl)-2,5-dihexyloxybenzene. The p-quaterphenyl or 1,3,4-oxadiazole derivatives were chosen as the electron-transporting segments. These poly(aryl ether)s are soluble in common organic solvents, and exhibit good thermal stability with 5% weight loss temperature above 400oC in nitrogen atmosphere. The photoluminescence emitted from these poly(aryl ether)s could be classified to three kind of types: (1) the emission of polymers contributed from each fluorophore; (2) the emission of polymers was dominated by the energy acceptor, the fluorophores with longer emissive wavelength, via reabsorption or energy transfer; (3) the emissive wavelengths of polymers were longer than each fluorophore due to the interchain interaction (such as excimer or exciplex). The emissive wavelengths of these poly(aryl ether)s are located at 407~498 nm in the blue visible region. The electrolumiescent spectra of most polymers are consistent with the PL spectra except P1、P2 and P10. The additional peaks appeared in the electrolumiescent spectra of P1、P2 and P10 were due to the emission of interchain exciton.
According to the results of cyclic voltammetry experiments, the hole and electron affinities of the isolated polymers can be promoted simultaneously by the introduction of hole and electron transporting segments. However, the isolated hole and electron transporting fluorophores in these poly(aryl ether)s function as hole and electron trap centers. The hole and electron cannot recombine via intrachain migration. Thus, we can imagine that the carrier-hopping barrier between the hole and electron transporting fluorophores may be a factor to influence the exciton formation.
參考文獻
[1] G. Destriau, J. Chem. Phys., 33, 587 (1936).
[2] (a)M. Pope, H. Kallmann, P. Magnante, J. Chem. Phys., 38, 2024 (1963).(b) W. Helfrich, W. G. Schneider, Phys. Rev. Lett., 14, 229 (1965).
[3] C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett, 51, 913 (1987).
[4] J. H. Burrououghes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. MacKay, R. H. Friend, P. L. Burn, A. B. Holmes, Nature, 347, 539 (1990).
[5] S. A. Jenekhe, S. Yi, Appl. Phys. Lett., 77, 2635 (2000).
[6] M. D. McGehee, A. J. Heeger, Adv. Mater., 12, 1655-1668 (2000).
[7] D. T. McQuade, A. E. Pullen, T. M. Swager, Chem. Rev., 100, 2537 (2000).
[8] Y. Ohmori, M. Uchida, K. Muro, K. Yoshino, Jpn. J. Appl. Phys., 30, L1941 (1991).
[9] (a) H. B. Gu, S. Morita, X. H. Yin, T. Kawai, K. Yoshino, Synth. Met., 69, 449 (1995). (b) Q. Pei, Y. Yang, J. Am. Chem. Soc., 118, 7416 (1996). (c) M. Grell, D. D. C. Bradley, M. Inbasekaran, E. P. Woo, Adv. Mater., 9, 798 (1997).
[10] A. J. Heeger, J. Phys. Chem. B, 105, 8475 (2001).
[11] G. Grem, G. Leditzky, B. Ullrich, G. Leising, Adv. Mater., 4, 36 (1992).
[12] U. Scherf, K. Müllen, Macromolecules, 25, 3546 (1992).
[13] (a) S. D. D. V. Rughooputh, S. Hotta, A. J. Heeger, F. Wudl, J. Polym. Sci., Polym. Phys. Ed., 25, 1071 (1987). (b) O. Inganas, W. R. Salaneck, J. E. Osterholm, J. Laakso, Synth. Met., 22, 395 (1988). (c) C. Roux, M. Leclerc, Macromolecules, 25, 2141 (1992).
[14] (a) A. K. Agrawal, S. A. Jenekhe, Chem. Mater., 8, 579 (1996). (b) X. Zhang, D. M. Kale, S. A. Jenekhe, Macromolecules, 35, 382 (2002).
[15] U. Mitschke, P. Bäuerle, J. Mater. Chem., 10, 1471 (2000).
[16] S. Son, A. Dodabalapur, A. J. Lovinger, M. E. Galvin, Science, 269, 376 (1995).
[17] (a)D. Braun, A. J. Heeger, Appl. Phys. Lett., 58, 1982 (1991). (b)Y. Yang, Q. Pei, A. J. Heeger, J. Appl. Phys., 79, 934 (1996).
[18] S. Doi, M. Kuwabara, T. Noguchi, T. Ohnishi, Synth. Met., 57, 4174 (1993).
[19] H. Vestweber, A. Greiner, U. Lemmer, R. F. Mahrt, R. Richert, W. Heitz, H. Bassler, Adv. Mater., 4, 661 (1992).
[20] Z. Yang, I. Sokolik, F. E. Karasz, Macromolecules, 26, 1188 (1993).
[21] N. C. Greenham, S. C. Moratti, D. D. C. Bradley, R. H. Friend, A. B. Holmes, Nature 365, 628 (1993).
[22] M. R. Andersson, D. Selse, M. Berggren, H. Jarvinen, T. Hjertberg, O. Inganas, O. Wennerstrom, J.-E. Osterholm, Macromolecules, 27, 6503 (1994).
[23] (a)R. F. Heck, Acc. Chem. Res., 12, 146 (1979). (b) S. T. Pasco, P. M. Lahti, F. E. Karasz, Macromolecules, 32, 6933 (1999).
[24] W.-X. Jing, A. Kraft, S. C. Moratti, J. Gruener, F. Cacialli, P.J. Hamer, A. B. Holmes, R. H. Friend, Synth. Met., 67, 161 (1994).
[25] H. Saadeh, T., III Goodson, L. Yu, Macromolecules, 30, 4608 (1997).
[26] Q. Pei, Y. Yang, J. Am. Chem. Soc., 118, 7416 (1996).
[27] H. K. Kim, M.-K. Ryu, K.-D. Kim, S.-M. Lee, S.-W. Cho, J.-W. Park, Macromolecules, 31, 1114 (1998).
[28] E. G. J. Staring, R. C. J. E. Demandt, D. Braun, G. L. J. Rikken, Y. A. R. R. Kessener, A. H. J. Venhuizen, M. M. F. Vanknippenberg, M. Bouwmans, Synth. Met., 71, 2179 (1995).
[29] H. G. Gilch, W. L. Wheelwright, J. Polym. Sci. Part A-1, 4, 1337 (1966).
[30] W. S. Wadsworth, W. D. Emmons, J. Am. Chem. Soc., 83, 1733 (1961).
[31] L. J. Rothberg, A. J. Lovinger, J. Mater. Res., 11, 3174 (1996).
[32] D. A. Skoog, F. J. Holler, T. A. Nieman, Principles of Instrumental Analysis, Harcourt Brace & Co., 1998, p 357.
[33] S. A. Jenekhe, J. A. Osaheni, Science, 265, 765 (1994).
[34] E. M. Conwell, Syn. Met., 85, 995 (1997).
[35] J. W. Blatchford, S. W. Jessen, L.-B. Lin, T. L. Gustafson, D.-K. Fu, H.-L. Wang, T. M. Swager, A. G. MacDiarmid, A. J. Epstein, Phys. Rev. B, 54, 9180 (1996).
[36] S. Abe, Syn. Met., 85, 1015 (1997).
[37] M. Yan, L. J. Rothberg, F. Papadimitrakopoulos, M. E. Galvin, T. M. Miller, Phys. Rev. Lett., 73, 744 (1994).
[38] R. G. Sun, Y. Z. Wang, D. K. Wang, Q. B. Zheng, E. M. Kyllo, T. L. Gustafson, A. J. Epstein, Appl. Phys. lett., 76, 634 (2000).
[39] A. L. Burin, M. A. Ratner, J. Phys. Chem. A, 104, 4704 (2000).
[40] S. M. Kelly, J. A. Connor, Flat Panel Displays: Advanced Organic Maerials, Cambridge: Royal Society of Chemistry, 2000, chapter 6.
[41] I. D. Parker, J. Appl. Phys., 75, 1656 (1994).
[42] J. C. Scott , G. G. Malliaras, Chem. Phys. Lett., 299, 115(1999).
[43] B.-J. Jung, J.-I. Lee, H. Y. Chu, L.-M. Do, H.-K. Shim, Macromolecules, 35, 2282 (2002).
[44] K. R. J. Thomas, J. T. Lin, Y.-T. Tao, C.-W. Ko, J. Am. Chem. Soc., 123, 9404 (2001).
[45] J. L. Bredas, A. J. Heeger, Chem. Phys. Lett., 217, 507 (1994).
[46] N. J. Turro, Modern molecular photochemistry, Mill Valley, Calif.: University Science Books, 1991, p 46.
[47] S. F. Alvarado, P. F. Seidler, D. G. Lidzey, D. D. C. Bradley, Phys. Rev. Lett., 81, 1082 (1998).
[48] E. M. Conwell, J. Perlstein, S. Shaik, Phys. Rev. B, 54, R2308 (1996).
[49] R. Jakubiak, C. J. Collison, W. C. Wan, L. J. Rothberg, B. R. Hsieh, J. Phys. Chem. A,; 103, 2394 (1999).
[50] (a) G. Klärner, R. D. Miller, C. J. Hawker, Polym. Prepr., 39, 1006 (1998). (b) J. M. J. Frèchet, Science, 263, 1710 (1994).
[51] S. Setayesh, A. C. Grimsdale, T. Weil, V. Enkelmann, K. Müllen, F. Meghdadi, E. J. W. List, G. Leising, J. Am. Chem. Soc., 123, 946 (2001).
[52] J. L. Bredas, A. J. Heeger, Chem. Phys. Lett., 217, 507 (1994).
[53] (a) T. Forster, Ann. Physik, 2, 55 (1948). (b) T. Forster, Disc. Faraday Soc., 27, 7 (1959).
[54] D. L. Dexter, J. Chem. Phys., 21, 836 (1953).
[55] R. A. Marcus, J. Chem. Phys., 43, 679 (1965).
[56] (a) 翁文國、林振華;工業材料,156期,p 75,民88年。(b)H. Ishii, K. Sugiyama, E. Ito, K. Seki, Adv. Mater., 11, 605 (1999).
[57] P. K. H. Ho, M. Granström, R. H. Friend, N. C. Greenham, Adv. Mater., 10, 769 (1998).
[58] S. A. Carter, M. Angelopoulos, S. Karg, P. J. Brock, J. C. Scott, Appl. Phys. Lett., 70, 2067 (1997).
[59] J. S. Kim, M. Granström, R. H. Friend, N. Johansson, W. R. Salaneck, R. Daik, W. J. Feast, F. Cacialli, J. Appl. Phys., 84, 6859 (1998).
[60] S. K. So1, W. K. Choi1, C. H. Cheng1, L. M. Leung, C. F. Kwong, Appl. Phys. A, 68, 447 (1999).
[61] J. Cui, A. Wang, N. L. Edleman, J. Ni, P. Lee, N. R. Armstrong, T. J. Marks, Adv. Mater., 13, 1476 (2001).
[62] F. Nüesch, E. W. Forsythe, Q. T. Le, Y. Gao, L. J. Rothberg, J. Appl. Phys., 87, 7973 (2000).
[63] I. H. Campbell, S. Rubin, T. A. Zawodzinski, J. D. Kress, R. L. Martin, D. L. Smith, N. N. Barashkov, J. P. Ferraris, Phys. Rev. B, 54, R14321 (1996).
[64] D.-J. Kim, S.-H. Kim, S.-H. Jin, D.-K. Park, H.-N. Cho, T. Zyung, I. Cho, S.-K. Choi, Eur. Polym. J., 35, 227 (1999).
[65] Z. H. Kafafi, Organic Light-Emitting Materials and Devices, Bellingham, Wash., USA: SPIE, 1997, pp 139-150.
[66] H. K. Kim, M.-K. Ryu, K.-D. Kim, S.-M. Lee, S.-W. Cho, J.-W. Park, Macromolecules, 31, 1114 (1998).
[67] F. Cacialli, R. H. Friend, W. J. Feast, P. W. Lovenich, Chem. Commun., 1778 (2001).
[68] T. S. Novokova, N. N. Barashkov, A. Yassar, M. Hmyene, J. P. Ferraris, Synth. Met., 83, 47 (1996).
[69] M. Zheng, A. M. Sarker, E. E. Gürel, P. M. Lahti, F. E. Karasz, Macromolecules, 33, 7426 (2000).
[70] H. K. Jung1, J. K. Lee1, M. S. Kang1, S. W. Kim, J. J. Kim, S. Y. Park1, Polymer Bulletin, 43, 13 (1999).
[71] S. Zheng, J. Shi, R. Mateu, Chem. Mater., 12, 1814 (2000).
[72] (a) F.-R. F. Fan, A. Mau, A. J. Bard, Chem. Phys. Lett., 116, 400 (1985). (b) S. Dailey, W. J. Feast, R. J. Peace, I. C. Sage, S. Tilla, E. L. Wood, J. Mater. Chem., 11, 2238 (2001).
[73] (a) X.-C. Li, F. Cacialli, M. Giles, J. Grüner, R. H. Friend, A. B. Holmes, S. C. Moratti, T. M. Yong, Adv. Mater., 7, 898 (1995). (b) X.-C. Li, T.-M. Yong, J. Grüner, A. B. Holmes, S. C. Moratti, F. Cacialli, R. H. Friend, Synth. Met., 84, 437 (1997).
[74] Z. Peng, Z. Bao, M. E. Galvin, Chem. Mater., 10, 2086 (1998).
[75] Z. Bao, Z. Peng, M. E. Galvin, E. A. Chandross, Chem. Mater., 10, 1201 (1998).
[76] (a)H. Meng, Z.-K. Chen, X.-L. Liu, Y.-H. Lai, S.-J. Chua, W. Huang, Phys. Chem. Chem. Phys., 1, 3123 (1999). (b) H. Meng, Z.-K. Chen, W.-L. Yu, J. Pei, X.-L. Liu, Y.-H. Lai, W. Huang, Synth. Met., 100, 297 (1999).
[77] S. A. Jenekhe, L. Lu, M. M. Alam, Macromolecules, 34, 7315 (2001).
[78] J. Kido, G. Harada, K. Nagai, Chem. Lett., 2, 161 (1996).
[79] Y. Liu, H. Ma, A. K.-Y. Jen, Chem. Commun., 2747 (1998).
[80] J. Lu, A. R. Hlil, Y. Sun, A. S. Hay, T. Maindron, J.-P. Dodelet, M. D’Iorio, Chem. Mater., 11, 2501 (1999).
[81] 黃孝文;”含發光基及電子傳遞基高分子的合成與性質研究”,國立成功大學化學工程系碩士論文,p 22,民國八十八年。
[82] 廖麒貴;”主鏈含孤立發光基及噁二唑基高分子的合成與電化學性質”,國立成功大學化學工程系碩士論文,p 29,民國九十年。
[83] J. F. Rusling, S. L. Suib, Adv. Mater., 6, 922 (1994)。
[84] Y. Liu, M. S. Liu, A. K.-Y. Jen, Acta Polym., 50, 105 (1999).
[85] Source: http://courses.nus.edu.sg/course/phyweets/Projects2000/polymer/FABRICATION[1].htm.
[86] B. Akermark, L. Eberson, E. Jonsson, E. Pettersson, J. Org. Chem., 40, 1365 (1975).
[87] A. Shiotani, H. Itatani, J. Chem. Soc. Perkin Trans. I, 1236 (1976).
[88] R. F. Heck, Acc. Chem. Res., 12, 146 (1979).
[89] N. Miyaura, K. Yamada, H. Suginome, A. Suzuki, J. Am. Chem. Soc., 107, 972 (1985).
[90] M. Ranger, M. Leclerc, Macromolecules, 32, 3306 (1999).
[91] (a) F. Negri, M. Z. Zgierski, J. Chem. Phys., 97, 7124 (1992). (b) H.-S. Im, E. R. Bernstein, J. Chem. Phys., 88, 7337 (1988).
[92] (a) J. L. Brédas, G. B. Street, B. Themans, J. M. Andre, J. Chem. Phys., 83, 1323 (1985).(b) H. M. Rietveld, E. N. Maslen, C. J. B. Clews, Acta Cryst, B, 26, 693 (1970).
[93] J.-F. Pan, S.-J. Chua, W. Huang, Thin Solid Films, 363, 1 (2000).
[94] T. J. Dingemans, A. Bacher, M. Thelakkat, L. G. Pedersen, E. T. Samulski, H.-W. Schmidt, Synth. Met., 105, 171 (1999).
[95] (a)M. Belletête, S. Beaupré, J. Bouchard, P. Blondin, M. Leclerc, G. Durocher, J. Phys. Chem. B, 104, 9118 (2000). (b) C. Wang, G.-Y. Jung, Y. Hua, C. Pearson, M. R. Bryce, M. C. Petty, A. S. Batsanov, A. E. Goeta, J. A. K. Howard, Chem. Mater., 13, 1167 (2001).
[96] G. G. Guilbault, Practical Fluorescence, Marcel Dekker, Inc.: New York, 1990, pp 103-109.
[97] D. Oelkrug, A. Tompert, J. Gierschner, H.-J. Egelhaaf, M. Hanack, M. Hohloch, E. Steinhuber, J. Phys. Chem. B, 102, 1902 (1998).
[98] (a) H. K. Kim, M.-K. Ryu, K.-D. Kim, S.-M. Lee, S.-W. Cho, J.-W. Park, Macromolecules, 31, 1114 (1998). (b) T. Ahn, H.-K. Shim, Macromol. Chem. Phys., 202, 3180 (2001).
[99] J. B. Briks, Photophysics of Aromatic Molecules, New York, N. Y.: Wiley, 1970, p 403.
[100] H. Kuhn, Pure Applied Chem., 11, 345 (1965).
[101] (a) S. A. Jenekhe, L. Lu, M. M. Alam, Macromolecules, 34, 7315 (2001). (b) B. Strehmel, A. M. Sarker, J. H. Malpert, V. Strehmel, H. Seifert, D. C. Neckers, J. Am. Chem. Soc., 121, 1226 (1999).
[102] (a) J.-H. Hsu, W. Fann, P.-H. Tsao, K.-R. Chuang, S.-A. Chen, J. Phys. Chem. A, 103, 2375 (1999). (b) H. L. Yuan; S. Tazuke, Polym. J., 15, 111 (1983).
[103] G. G. Guilbault, Practical Fluorescence, Marcel Dekker, Inc.: New York, 1990, Chap 4.
[104] J. Stampfl, S. Tasch, G. Leising, U. Scherf, Synth. Met., 71, 2125 (1995).
[105] (a) H. Kameshima, N. Nemoto, T. Endo, J. Polym. Sci., Part A: Polym. Chem., 39, 3143 (2001). (b) H. K. Kim, M.-K. Ryu, K.-D. Kim, S.-M. Lee, Macromolecules, 31, 1114 (1998).
[106] H. M. McConnell, J. Chem. Phys., 35, 508 (1961).
[107] M. D. Todd, A. Nitzan, M. A. Ratner, J. Phys. Chem., 97, 29 (1993).
[108] E. Meggers, M. E. Michel-Beyerle, B. Giese, J. Am. Chem. Soc., 120, 12950 (1998).
[109] (a) L.-O. Pålsson, C. Wang, A. P. Monkman, M. R. Bryce, G. Rumbles, D. W. Samuel, Synth. Met., 119, 627 (2001). (b) H. Kameshima, N. Nemoto, T. Endo, J. Polym. Sci. A Polym. Chem., 39, 3143 (2001).
[110] H. Eckhart, L. W. Shacklette, K. Y. Jen, R. L. Elsenaumer, J. Chem. Phys., 91, 1303 (1989).
[111] B. Liu, W.-L. Yu, Y.-H. Lai, W. Huang, Chem. Mater., 13, 1984 (2001).
[112] K. Yoshino, K. Hosoda, A. Fujii, M. Ishikawa, Jan. J. Appl. Phys., 36, L 368 (1997).
[113] H. Meng, Z.-K. Chen, X.-L. Liu, Y.-H. Lai, S.-J. Chua, W. Huang, Phys. Chem. Chem. Phys., 1, 3123 (1999).
[114] 古俊能;有機發光二極體用ITO,工業材料,169期,p 106,民90年1月。
[115] S.-Y. Song, T. Ahn, H.-K. Shim, I.-S. Song, W.-H. Kim, Polymer, 42, 4803 (2001).
[116] 許榮賓;”含發光基及噁二唑基高分子的合成與光電性質探討”,國立成功大學化學工程系碩士論文,民國九十一年。
[117] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Science, 258, 1474 (1992).