簡易檢索 / 詳目顯示

研究生: 賴東佑
Lai, Dong-Yu
論文名稱: 單疊層波浪型固態氧化物燃料電池性能之研究
Study on the Performance of Mono-Block-Layer-Built-type Solid Oxide Fuel Cell
指導教授: 陳朝光
Chen, Cha'o-Kung
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 129
中文關鍵詞: 固態氧化物燃料電池孔隙率透氣率
外文關鍵詞: Solid oxide fuel cell, Porosity, Permeability
相關次數: 點閱:74下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對平板型與單塊疊層結構型(MOLB)固態氧化物燃料電池進行流場、濃度與電場的偶合分析與比較,並發展出複雜的物理數值模擬程式,比較不同幾何形狀對固態氧化物燃料電池之影響。將燃料電池之電化學原理、流體力學分別建置的數值分析程式。達西定律(Darcy’s law)控制多孔電極流動力。波茲曼(Bruggman)模型描述電極內反應物與生成物的擴散效應,巴特勒-沃爾默(Butler-Volmer)電極反應方程式來解電化學動力學和電極表面上的反應速率之關係,來分析影響電池輸出性能的相關因素。數值分析結果顯示單疊層波浪型固態氧化物燃料電池比平板型固態氧化物燃料電池具有較高的燃料/氧化劑利用率,而使得電流密度高於平板型固態氧化物燃料電池。
    本論文亦探討在不同的操作條件和設計參數下,燃料在氣體流道、電解質和內部之傳輸行為,模擬氣體在流道中流動、擴散現象與壓力分布情況,並討論MOLB燃料電池的電壓與電流密度之特性,並分析影響電池輸出電壓之各參數的關係。

    This dissertation is focused on the analysis and comparison in terms of fluid flow, concentration level, and electric field between planar solid oxide fuel cell (planar SOFC) and mono-block-layer-build (MOLB) type SOFC. Further, it has developed a variety of sophisticated physical value simulations model to compare the influences on SOFC by different shaped items. Among them, electrochemical and fluid dynamics principles are used to create a value analysis program for fuel cells. Darcy’s law is applied to control flow momentum in the porous electrodes. The Bruggman model is adopted to illustrate the diffusion effects of reactant species within electrodes. Butler-Volmer’s equation of electrode’s reaction is used to deal with the relation between the electrochemical kinetics and the species transport on the electrode surfaces so as to analyze the factors the lead to the performance of the fuel cell. The results reveal that the fuel/oxidant utilization rate of the MOLB-type SOFC is higher than that of the planar SOFC; therefore, the current density of the former is higher than that of the latter.
    In addition, this dissertation seeks to analyze the transport status of the fuel in air flow, electrolyte as well as in its interior upon various conditions and perimeters. By simulating the air flowing in the conduits and analyzing its diffusion and pressure distribution, this dissertation can map out the voltage and current density characteristics of MOLB-type SOFC so as to analyze the relation of parameters that affect the output voltage of the SOFC.

    中文摘要 I 英文摘要 II 誌謝 IV 目錄 V 表目錄 IX 圖目錄 X 符號說明 XIII 第一章 緒論 1 1.1 前言 1 1.2 燃料電池簡介 2 1.2.1 燃料電池發電原理 2 1.2.2 燃料電池的優缺點 3 1.2.3 燃料電池的種類 6 1.2.4 燃料電池系統 7 1.3 研究動機 8 1.4 本文架構 9 第二章 固態氧化物燃料電池簡介 13 2.1 固態氧化物燃料電池優缺點 13 2.2 固態氧化物燃料電池工作原理 15 2.3 固態氧化物燃料電池電極熱力學 19 2.3.1 標準狀態下的理論電動勢 19 2.3.2 非標準狀態下的理論電動勢 20 2.4 固態氧化物燃料電池電極反應動力學 22 2.4.1 Butler-Volmer方程式 22 2.4.2 電池極化 25 2.5 固態氧化物燃料電池種類 28 2.6 固態氧化物燃料電池之文獻回顧 31 2.6.1 固態氧化物燃料電池之發展 31 2.6.2 固態氧化物燃料電池數值分析之文獻探討 34 第三章 燃料電池模擬分析 47 3.1 燃料電池流場模擬 47 3.2 統御方程式 48 3.3 模組邊界條件 51 3.4 研究規劃 52 第四章 數值方法 57 4.1 概述 57 4.2 數值方法 57 4.3 格點配置 58 4.4 有限體積法 59 4.5 壓力修正方程式 61 4.6 邊界條件之離散 65 4.7 差分方程式求解方法 65 4.8 收斂標準 66 4.9 網格獨立測試 67 第五章 平板型與單疊層波浪型SOFC模擬結果與討論 73 5.1 幾何形狀 73 5.2 電化學原理及統御方程式 74 5.2.1 電化學反應式 74 5.2.1 統御方程式 74 5.3 數值結果 75 第六章 單疊層波浪型SOFC電池性能模擬結果與討論 87 6.1 幾何形狀與原理 87 6.2 數值結果 87 第七章 SOFC之PEN薄膜塗佈之磁流場之穩定性探討 103 7.1 薄膜磁流體文獻回顧 104 7.2 薄膜磁流體統御方程式 104 7.3 薄膜磁流體之線性穩定性 110 7.4 薄膜磁流體之弱非線性穩定性 112 第八章 結論與展望 117 8.1 平板型與單疊層波浪型SOFC模擬結論 117 8.2 單疊層波浪型SOFC電池性能模擬結論 117 8.3 SOFC之PEN薄膜塗佈之磁流場之穩定性探討結論 118 8.4 未來研究發展與建議 119 參考文獻 120 自述 126 個人著作 127

    [1] Carrette, L., Friedrich, K. A., Stimming, U., “Fuel cells - fundamentals and applications,” Fuel Cells, Vol. 1, pp. 5-39, 2001.
    [2] Badwal, S. P. S., Bannister, M. J., Hannink, R. H. J., Science and technology of zirconia v, Technomic Publishing Company, Lancaster, PA, 1993.
    [3] 黃鎮江, 燃料電池,全華科技圖書,民國92 年。
    [4] Vielstich, W., Lamm, A., Gasteiger, H. A., Handbook of fuel cell: Fundamentals, technology and applications, WILEY, 2003.
    [5] Blum, L., Meulenberg, W. A., Nabielek, H., W., R. S., “Worldwide SOFC technology overview and benchmark,” International Journal of Applied Ceramic Technology, Vol. 2, pp. 482-492, 2005.
    [6] Hwang, J. J., Wang, D. Y., Shih, N. C., Lai, D. Y., Chen, C. K., “Development of fuel-cell-powered electric bicycle,” Journal of Power Sources, Vol. 133, pp. 223-228, 2004.
    [7] Huff, J., Status of fuel cell technologies, in Fuel Cell Seminar, AZ, Tucson, 1998.
    [8] Singhal, S. C., Kendall, K., High-temperature solid oxide fuel cells: Fundamentals, design and applications, Elsevier Science, 2004.
    [9] Bear, J., Buchlin, J. M., Modeling and application of transport phenomena in porous media, Kluwer Academic Publishers, Boston, 1991.
    [10] Noren, D. A., Hoffman, M. A., “Clarifying the butler-volmer equation and related approximations for calculating activation losses in solid oxide fuel cell models,” Journal of Power Sources, Vol. 152, pp. 175-181, 2005.
    [11] Minh, N. Q., “Solid oxide fuel cell technology-features and applications,” Solid State Ionics, Vol. 174, pp. 271-277, 2004.
    [12] Casanova, A., “A consortium approach to commercialized westinghouse solid oxide fuel cell technology,” Journal of Power Sources, Vol. 71, pp. 65-70, 1998.
    [13] Staniforth, J., Kendall, K., “Biogas powering a small tubular solid oxide fuel cell,” Journal of Power Sources, Vol. 71, pp. 275-277, 1998.
    [14] Uchida, H., Suzuki, H., Watanabe, M., “High-performance electrode for medium-temperature solid oxide fuel cells,” Journal of The Electrochemical Society, Vol. 145, pp. 615-620, 1998.
    [15] Nakanishi, A., Hattori, M., Sakaki, Y., Miyamoto, H., Aiki, H., Takenobu, K., Nishiura, M., “Development of MOLB type SOFC, in Proceedings of the Fifth European SOFC Forum,” Lucerne, Switzerland, 1-5, 2002.
    [16] Yoshida, Y., Hisatome, N., Takenobu, K., Development of SOFC for products, Mitsubishi Heavy Industries, Ltd. Technical Review, 2003.
    [17] Ponthieu, E., “European fuel cell research, development and demonstrations: Future programmes and aims,” Journal of Power Sources, Vol. 72, pp. 244-244, 1998.
    [18] Emil, B., Hans, P., “Über brennstoff-ketten mit festleitern,” Zeitschrift für Elektrochemie und Angewandte Physikalische Chemie, Vol. 43, pp. 727-732, 1937.
    [19] Heuer, A. H., Hobbs, L. W., Science and technology of zirconia, American Ceramic Society, Columbus, Ohio, 1981.
    [20] Stambouli, A. B., Traversa, E., “Solid oxide fuel cells (SOFCs): A review of an environmentally clean and efficient source of energy,” Renewable and Sustainable Energy Reviews, Vol. 6, pp. 433-455, 2002.
    [21] Larminie, J., Dicks, A., Fuel cell systems explained second edition, 2003.
    [22] George, R. A., “Status of tubular SOFC field unit demonstrations,” Journal of Power Sources, Vol. 86, pp. 134-139, 2000.
    [23] Wepfer, W. J., Woolsey, M. H., “High-temperature fuel cells for power generation,” Energy Conversion and Management, Vol. 25, pp. 477-486, 1985.
    [24] Kanamura, K., Yoshika, S., “Temperature distribution in tubular solid oxide fuel cell proceedings of the first international symposium on solid oxide fuel cells”, Hollywood, Florida, pp. 293-303, 1989.
    [25] Hirano, A., Suzuki, M., Ippommatsu, M., “Evaluation of a new solid oxide fuel cell system by non-isothermal modeling,” Journal of The Electrochemical Society, Vol. 139, pp. 2744-2751, 1992.
    [26] Bessette, N. F. I., Wepfer, W. J., Winnick, J., “A mathematical model of a solid oxide fuel cell,” Journal of The Electrochemical Society, Vol. 142, pp. 3792-3800, 1995.
    [27] Achenbach, E., “Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack,” Journal of Power Sources, Vol. 49, pp. 333-348, 1994.
    [28] Yakabe, H., Hishinuma, M., Uratani, M., Matsuzaki, Y., Yasuda, I., “Evaluation and modeling of performance of anode-supported solid oxide fuel cell,” Journal of Power Sources, Vol. 86, pp. 423-431, 2000.
    [29] Calise, F., Dentice d'Accadia, M., Restuccia, G., “Simulation of a tubular solid oxide fuel cell through finite volume analysis: Effects of the radiative heat transfer and exergy analysis,” International Journal of Hydrogen Energy, Vol. 32, pp. 4575-4590, 2007.
    [30] Recknagle, K. P., Williford, R. E., Chick, L. A., Rector, D. R., Khaleel, M. A., “Three-dimensional thermo-fluid electrochemical modeling of planar SOFC stacks,” Journal of Power Sources, Vol. 113, pp. 109-114, 2003.
    [31] Ackmann, T., Haart, L. G. J. d., Lehnert, W., Stolten, D., “Modeling of mass and heat transport in planar substrate type SOFCs,” Journal of The Electrochemical Society, Vol. 150, pp. A783-A789, 2003.
    [32] Lockett, M., Simmons, M. J. H., Kendall, K., “CFD to predict temperature profile for scale up of micro-tubular SOFC stacks,” Journal of Power Sources, Vol. 131, pp. 243-246, 2004.
    [33] Suwanwarangkul, R., Croiset, E., Fowler, M. W., Douglas, P. L., Entchev, E., Douglas, M. A., “Performance comparison of fick’s, dusty-gas and stefan-maxwell model to predict the concentration overpotential of a SOFC anod,” Journal of Power Sources, Vol. 122, pp. 9-18, 2003.
    [34] Gardner, F. J., Day, M. J., Brandon, N. P., Pashley, M. N., Cassidy, M., “SOFC technology development at rolls-royce,” Journal of Power Sources, Vol. 86, pp. 122-129, 2000.
    [35] Haberman, B. A., Young, J. B., “Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell,” International Journal of Heat and Mass Transfer, Vol. 47, pp. 3617-3629, 2004.
    [36] Liu, H. C., Lee, C. H., Shiu, Y. H., Lee, R. Y., Yan, W. M., “Performance simulation for an anode-supported SOFC using star-cd code,” Journal of Power Sources, Vol. 167, pp. 406-412, 2007.
    [37] Chyou, Y. P., Chung, T. D., Chen, C. S., Chen, J. C., “Electrochemical and heat transfer analysis of a plannar solid oxide fuel cell”, in 27th National Conference on Applied and Theoretical Mechanics, 2003.
    [38] Chyou, Y. P., Chung, T. D., Chen, J. C., Shie, R. F., “An efficient computational methodology for electrochemical and heat transfer analyses of a planar solid oxide fuel cell”, in 6th European SOFC Forum, 2004.
    [39] Chyou, Y. P., Chung, T. D., Chen, J. S., Shie, R. F., “Integrated thermal engineering analyses with heat transfer at periphery of planar solid oxide fuel cell,” Journal of Power Sources, Vol. 139, pp. 126-140, 2005.
    [40] Jiang, W., Fang, R., Khan, J. A., Dougal, R. A., “Parameter setting and analysis of a dynamic tubular SOFC model,” Journal of Power Sources, Vol. 162, pp. 316-326, 2006.
    [41] Lehnert, W., Meusinger, J., Thom, F., “Modelling of gas transport phenomena in SOFC anodes,” Journal of Power Sources, Vol. 87, pp. 57-63, 2000.
    [42] Harvey, S. P., Richter, H. J., “Gas turbine cycles with solid oxide fuel cells---part i: Improved gas turbine power plant efficiency by use of recycled exhaust gases and fuel cell technology,” Journal of Energy Resources Technology, Vol. 116, pp. 305-311, 1994.
    [43] Massardo, A. F., Lubelli, F., “Internal reforming solid oxide fuel cell-gas turbine combined cycles (irSOFC-gt): Part a---cell model and cycle thermodynamic analysis,” Journal of Engineering for Gas Turbines and Power, Vol. 122, pp. 27-35, 2000.
    [44] Costamagna, P., Magistri, L., Massardo, A. F., “Design and part-load performance of a hybrid system based on a solid oxide fuel reactor and a micro gas turbine,” Journal of Power Sources, Vol. 96, pp. 352-368, 2001.
    [45] Hwang, J. J., Chen, P. Y., “Heat/mass transfer in porous electrodes of fuel cells,” International Journal of Heat and Mass Transfer, Vol. 49, pp. 2315-2327, 2006.
    [46] Kaka, S., Pramuanjaroenkij, A., Zhou, X. Y., “A review of numerical modeling of solid oxide fuel cells,” International Journal of Hydrogen Energy, Vol. 32, pp. 761-786, 2007.
    [47] Patankar, S. V., Baliga, B. R., “A new finite-difference scheme for parabolic differential equations,” Numerical Heat Transfer, Vol. 1, pp. 27 -37, 1978.
    [48] Hwang, J. J., Lai, D. Y., “Three-dimensional mixed convection in a rotating multiple-pass square channel,” International Journal of Heat and Mass Transfer, Vol. 41, pp. 979-991, 1998.
    [49] Patankar, S. V., Numerical heat transfer and fluid flow, Hemisphere, New York, 1980.
    [50] CFD-ACE (U), CFD Research Corporation, Alabama, USA, 2002.
    [51] Patankar, S. V., Spalding, D. B., “A calculation procedure for heat, mass and momentm transfer in three-dimensional parabolic flows,” International Journal of Heat and Mass Transfer, Vol. 15, pp. 1787-1972, 1972.
    [52] Young, D., Iterative methods for solving partial difference equations of elliptic type, Doctoral thesis, Harvard University, 1950.
    [53] Aguiar, P., Adjiman, C. S., Brandon, N. P., “Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: Model-based steady-state performance,” Journal of Power Sources, Vol. 138, pp. 120-136, 2004.
    [54] Hwang, J. J., “Mass/charge transfer in mono-block-layer-built-type solid-oxide fuel cells,” Journal of Fuel Cell Science and Technology, Vol. 2, pp. 164-170, 2005.
    [55] Yih, C. S., “Stability of liquid flow down an inclined plane,” Physics of Fluids, Vol. 6, pp. 321-334, 1963.
    [56] Benney, D. J., “Long waves on liquid film ” Journal of Mathematics and Physics Vol. 45, pp. 150-155, 1966.
    [57] Chandrasekhar, S., “Hydrodynamic and hydromagnetic stability,” Oxford University Press, New York 1961.
    [58] Wasa, K., Kitabatake, M., Adachi, H., Thin film materials technology: Sputtering of compound materials, William Andrew, 2004.
    [59] Herdrich, G., Auweter-Kurtz, M., Fertig, M., Nawaz, A., Petkow, D., “MHD flow control for plasma technology applications,” Vacuum, Vol. 80, pp. 1167-1173, 2006.
    [60] Attia, H. A., “Unsteady MHD flow near a rotating porous disk with uniform suction or injection,” Fluid Dynamics Reseach, Vol. 23, pp. 283-290, 1998.
    [61] 林銘哲,流體在旋轉圓盤表面上薄膜流動之弱非線性液動穩定性, 國立成功大學機械工程研究所博士論文,2009。
    [62] Ginzburg, V. L., Landau, L. D., “Theory of superconductivity,” Journal of Experiential Theoretic Physics, Vol. 20, pp. 1064-1082, 1950.
    [63] Tsai, J. S., Hung, C. Y., Chen, C. K., “Nonlinear hydromagnetic stability analysis of condensation film flow down a vertical plate,” Acta Mechanica, Vol. 118, pp. 197-212, 1996.
    [64] Cheng, P. J., Lin, T. W., “Surface waves on viscoeiastic magnetic fluid film flow down a vertical column,” International Journal of Engineering Science, Vol. 45, pp. 905-922, 2007.
    [65] Chen, C. I., “Non-linear stability characterization of the thin micropolar liquid film flowing down the inner surface of a rotating vertical cylinder,” Communications in Nonlinear Science and Numerical Simulation, Vol. 12, pp. 760-775, 2007.
    [66] Takama, T., Kobayashi, K., “Mearsuring interfacial waves on film flowing down tube inner wall using laser focus displacement meter,” International Journal of Multiphase Flow, Vol. 26, pp. 1493-1507, 2000.

    無法下載圖示 校內:2015-08-02公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE