| 研究生: |
黃祥瑜 Huang, Hsiang-Yu |
|---|---|
| 論文名稱: |
依虛擬切割之互斥或錯誤糾正機制 A Virtual Fragmentation-based XOR Error Correction Scheme |
| 指導教授: |
謝錫堃
Shieh, Ce-Kuen |
| 共同指導教授: |
黃文祥
Hwang, Wen-Shyang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 互斥或 、錯誤糾正 、虛擬切割 、回復負擔 |
| 外文關鍵詞: | XOR, Error correction, Virtual Fragmentation, Recovery Overhead |
| 相關次數: | 點閱:84 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
影像串流於無線網路上進行傳輸時往往會面臨到或多或少的挑戰,其中因為受到無線訊號的錯誤干擾,會使得接收端在收到資料影像串流時,造成影像串流品質的下降。前向糾錯機制〈Forward Error Correction〉是一種經常在無線網路上被拿來使用於傳輸影像串流時的錯誤回復機制。傳統封包回復制的前向糾錯機制使用一個完整大小的冗餘資料封包,去回復可能只有幾個位元或幾個位元組錯誤的資料封包。此種作法在資源相對於有線網路來的較少的無線網路上來進行是比較沒有效率的。也因此,在這篇論文中,我們提出了依虛擬切割之互斥或錯誤糾正機制 (XOR-EC)。藉由此機制,假定可以獲知突發式位元錯誤長度的資料,我們可以在突發式位元通道上以有效的方式降低回復負擔的資料量。XOR-EC機制使用虛擬切割封包的方法來避免因實際切割調整封包而增加的額外的封包標頭資料量,並能藉此虛擬切割的方式,產生較低資料量的回復負擔。在和相關研究的幾個比較項目的結果上,我們的實驗結果在回復負擔的數值上呈現了相對較低的表現,同時在有效的封包遺失率上也維持了好的回復能力。
Video transmission over wireless networks faces challenges due to suffering from wireless errors, which causes lower video quality. The well-known error recovery scheme “Forward Error Correction (FEC)” is generally used to protect the video quality. Packet-level FEC uses a complete packet to recover the wireless errors, which are just a-few-bit-or-byte errors inside the packet. Such approach is not only inefficient but also causes great recovery overhead problems. Hence, in this thesis, a virtual fragmentation-based XOR error correction (XOR-EC) scheme is proposed which effectively reduces the FEC recovery overhead over bursty channels as long as the burst bit error length can be known. The XOR-EC scheme uses the virtual adaptation to generate the reduced FEC redundancy without increasing the packet header overhead. We evaluate the performance metrics with other proposals, and our experimental results outperform in recovery overhead with lower values of recovery overhead than other proposals, and still maintain good recovery ability in effective packet loss rate.
[1] J. C. Bolot, et al., "Adaptive FEC-based error control for Internet telephony," 1999, pp. 1453-1460 vol. 3.
[2] M. van der Schaar, et al., "Adaptive cross-layer protection strategies for robust scalable video transmission over 802.11 WLANs," Selected Areas in Communications, IEEE Journal on, vol. 21, pp. 1752-1763, 2003.
[3] M. F. Tsai, et al., "Burst-aware adaptive forward error correction in video streaming over wireless networks," 2008, pp. 625-628.
[4] M. F. Tsai, et al., "Adaptive hybrid error correction model for video streaming over wireless networks," ACM Multimedia Systems Journal, pp. 1-14.
[5] J. Korhonen, et al., "Generic forward error correction of short frames for IP streaming applications," Multimedia Tools and Applications, vol. 29, pp. 305-323, 2006.
[6] G. Shen and E. Liu, "Correlated FEC Scheme for Transmission Reliability over Burst Error Wireless Channels," 2007, pp. 856-860.
[7] T. Stockhammer and M. M. Hannuksela, "H. 264/AVC video for wireless transmission," Wireless Communications, IEEE, vol. 12, pp. 6-13, 2005.
[8] Y. Shen, et al., "Video coding with fixed-length packetization for a tandem channel," Image Processing, IEEE Transactions on, vol. 15, pp. 273-288, 2006.
[9] Y. Shan, et al., "Adaptive two-stage FEC scheme for scalable video transmission over wireless networks," Signal Processing: Image Communication, vol. 24, pp. 718-729, 2009.
[10] M. F. Tsai, et al., "MAC-level Forward Error Correction mechanism for minimum error recovery overhead and retransmission," Mathematical and Computer Modelling, 2010.
[11] A. Nafaa, et al., "Forward error correction strategies for media streaming over wireless networks," 46, IEEE Communications Magazine,, 2008.
[12] J. Jeong and C. T. Ee, "Forward error correction in sensor networks," WWSN, University of California, Berkeley, 2006.
[13] H. Y. Huang, et al., "Adaptive forward error correction with cognitive technology mechanism for video streaming over wireless networks," 2010, pp. 519-521.
[14] R. Cohen, et al., "Cross-layer hybrid FEC/ARQ reliable multicast with adaptive modulation and coding in broadband wireless networks," IEEE/ACM Transactions on Networking (TON), vol. 18, pp. 1908-1920, 2010.
[15] S. H. Shah, et al., "Available bandwidth estimation in IEEE 802.11-based wireless networks," 2003.
[16] T. Schierl, et al., "Mobile video transmission using scalable video coding," Circuits and Systems for Video Technology, IEEE Transactions on, vol. 17, pp. 1204-1217, 2007.
[17] C. W. Lee, et al., "Adaptive UEP and packet size assignment for scalable video transmission over burst-error channels," EURASIP journal on applied signal processing, vol. 2006, pp. 256-256, 2006.
[18] M. F. Tsai, et al., "An adaptive packet and block length forward error correction for video streaming over wireless networks," Wireless Personal Communications, pp. 1-12, 2011.
[19] G. Haslinger and O. Hohlfeld, "The Gilbert-Elliott model for packet loss in real time services on the Internet," 2008, pp. 1-15.
[20] V. R. Gandikota, et al., "Adaptive FEC-based packet loss resilience scheme for supporting voice communication over ad hoc wireless networks," IEEE Transactions on Mobile Computing, pp. 1184-1199, 2008.
[21] P. Ferre, et al., "A video error resilience redundant slices algorithm and its performance relative to other fixed redundancy schemes," Signal Processing: Image Communication, vol. 25, pp. 163-178, 2010.
[22] Y. C. Wang, et al., "Cross-Layer Unequal Error Protection Mechanism with an Interleaved Strategy for Video Streaming over Wireless Networks," 2010, pp. 1-6.
[23] A. Basalamah and T. Sato, "A Comparison of Packet-Level and Byte-Level Reliable FEC Multicast Protocols for WLANs," 2007, pp. 4702-4707.
[24] A. Argyriou, "Cross-layer error control for multimedia streaming in wireless/wireline packet networks," Multimedia, IEEE Transactions on, vol. 10, pp. 1121-1127, 2008.
[25] V. Gandikota, B. Tamma, and C. Murthy, Adaptive FEC-based packet loss resilience scheme for supporting voice communication over ad hoc wireless networks. IEEE Transactions on Mobile Computing, vol. 7, no. 10, pp. 1184-1199, 2008.
[26] J. Choi and J. Shin, Cross-layer error-control with low-overhead ARQ for H.264 video transmission over wireless LANs. Computer Communications, vol. 30,
no. 7, pp. 1476-1486, 2007.
[27] http://www2.tek.com/cmswpt/psdetails.lotr?ct=PS&cs=psu&ci=17332&lc=EN