| 研究生: |
曾正龍 Tseng, Cheng-Lung |
|---|---|
| 論文名稱: |
基於最大似然偵測法之多模態心跳偵測與基準點提取 Multimodal Heartbeat Detection and Fiducial Point Extraction Based on Maximum Likelihood Estimation |
| 指導教授: |
卿文龍
Chin, Wen-Long |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 多模態心跳偵測 、基準點提取 、心電圖 、動脈血壓 、最大似然偵測法 、QRS複合波 、MGH/MF資料庫 |
| 外文關鍵詞: | multimodal heartbeat detection, fiducial point extraction, electrocardiogram, arterial blood pressure, ML estimation, QRS complex, MGH/MF database |
| 相關次數: | 點閱:85 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇提出在多模態記錄帶下,利用最大似然偵測法(maximum likelihood estimation, ML estimation)實現心跳偵測的演算法。此演算法使用到心電圖訊號(electrocardiogram, ECG)以及動脈血壓訊號(arterial blood pressure, ABP)來做運算。首先,將兩個訊號同時使用最大似然偵測法找出心跳的位置,再將位置的資訊結合,藉此得到更精確的偵測結果,而在ECG訊號使用ML演算法的過程中,利用其運算出的參數可標記出QRS複合波之起始點與終點的位置,使醫療單位能做更進一步的診斷與分析。
使用MGH/MF資料庫所提供的ECG與ABP訊號及參考標籤進行模擬及驗證,在單使用ECG訊號偵測下,偵測靈敏度(Sensitivity, Se)是98.94%,預測力(Positive predictivity, P+)是98.62%,而同時使用ECG訊號以及ABP訊號偵測後,偵測靈敏度提升為98.98%,預測力提升為98.71%。使用QT資料庫所提供的基準點(fiducial point)來驗證,QRS複合波起始點及終點的平均值皆在1個sample以內,而標準差大約為3個samples。
We present a new algorithm for the heartbeat detection based on the maximum-likelihood (ML) estimation in multimodal records. The detector uses electrocardiogram (ECG) signals and arterial blood pressure (ABP) signals. In first step, heartbeats are detected separately in both of the ECG and ABP signals. Then, the detected heartbeat positions from ECG and ABP signals are combined into a stream of detected heartbeat positions. Meanwhile, fiducial points are extracted in the process of heartbeat detection only using ECG signal. The algorithm was evaluated on several database, such as MIT-BIH Arrhythmia, MGH/MF and QT database. For the MGH/MF database, the multimodal heartbeat detector obtained a sensitivity of =98.98% and a positive predictivity of = 98.71%. As for the fiducial points of the QRS waves, the mean and standard deviation of the differences between the automatic and manual annotations were assessed. The mean error did not exceed one sample, while the standard deviations were about three samples.
[1] B. U. Kohler, C. Hennig, and R. Orglmeister, "The principles of software qrs
detection," IEEE Eng. Med. Biol. Mag., vol. 21, pp. 42-57, Jan 2002.
[2] N. V. Thakor, J. G. Webster, and W. J. Tompkins, "Estimation of qrs complex
power spectra for design of a qrs filter," IEEE Trans. Biomed. Eng.,
vol. BME-31, pp. 702-706, Nov 1984.
[3] J. Pan and W. J. Tompkins, "A real-time qrs detection algorithm," IEEE
Trans. Biomed. Eng., vol. BME-32, pp. 230-236, March 1985.
[4] L. Keselbrener, M. Keselbrener, and S. Akselrod, "Nonlinear high pass filter
for r-wave detection in ecg signal," Med. Eng. Phys., vol. 19, no. 5,
pp. 481-484, 1997.
[5] M. Okada, "A digital filter for the ors complex detection," IEEE Trans.
Biomed. Eng., vol. BME-26, pp. 700-703, Dec 1979.
[6] Y.-C. Yeh and W.-J. Wang, "Qrs complexes detection for ecg signal: The
difference operation method," Comput. Methods and Programs Biomed.,
vol. 91, no. 3, pp. 245-254, 2008.
[7] U. Pangerc and F. Jager, "Robust detection of heart beats in multimodal
records using slope- and peak-sensitive band-pass filters," Physiol.
Meas., vol. 36, no. 8, p. 1645, 2015.
[8] C. Burrus, H. Guo, and R. Gopinath, Introduction to Wavelets and Wavelet
Transforms. Pearson, 1998.
[9] G. Strang and T. Nguyen, Wavelets and Filter Banks. Wellesley-Cambridge Press, 1996.
[10] C. Li, C. Zheng, and C. Tai, "Detection of ecg characteristic points using
wavelet transforms," IEEE Trans. on Biomed. Eng., vol. 42, pp. 21-28,
Jan 1995.
[11] S. Kadambe, R. Murray, and G. F. Boudreaux-Bartels, "Wavelet transform-based
qrs complex detector," IEEE Trans. on Biomed. Eng., vol. 46, pp. 838-848, July 1999.
[12] J. P. Martinez, R. Almeida, S. Olmos, A. P. Rocha, and P. Laguna, "A
wavelet-based ecg delineator: evaluation on standard databases," IEEE
Trans. Biomed. Eng., vol. 51, pp. 570-581, April 2004.
[13] Z. Zidelmal, A. Amirou, M. Adnane, and A. Belouchrani, "Qrs detection based on
wavelet coefficients," Comput. Methods Programs Biomed., vol. 107,
no. 3, pp. 490 - 496, 2012.
[14] P. S. Hamilton and W. J. Tompkins, "Adaptive matched filtering for qrs
detection," in Proc. Annu. Int. Conf. IEEE Engineering in Medicine and
Biology Society, pp. 147-148 vol.1, Nov 1988.
[15] R. Vullings, B. de Vries, and J. W. M. Bergmans, "An adaptive kalman filter
for ecg signal enhancement," IEEE Trans. Biomed. Eng., vol. 58,
pp. 1094-1103, April 2011.
[16] S. Jain, M. Ahirwal, A. Kumar, V. Bajaj, and G. Singh, "Qrs detection using
adaptive filters: A comparative study," ISA Trans., vol. 66, pp. 362
- 375, 2017.
[17] G. Moody, B. Moody, and I. Silva, "Robust detection of heart beats in
multimodal data: The physionet/computing in cardiology challenge 2014," in
Comput. in Cardiol., pp. 549-552, Sept 2014.
[18] T. D. Cooman, G. Goovaerts, C. Varon, D. Widjaja, T. Willemen, and S. V.
Huffel, "Heart beat detection in multimodal data using automatic relevant
signal detection," Physiol. Meas., vol. 36, no. 8, p. 1691, 2015.
[19] M. A. F. Pimentel, M. D. Santos, D. B. Springer, and G. D. Clifford, "Heart
beat detection in multimodal physiological data using a hidden semi-markov
model and signal quality indices," Physiol. Meas., vol. 36, no. 8,
p. 1717, 2015.
[20] M. Vollmer, "Robust detection of heart beats using dynamic thresholds and
moving windows," in Comput. in Cardiol., pp. 569-572, Sept 2014.
[21] C. H. Antink, C. Brüser, and S. Leonhardt, "Multimodal sensor fusion of
cardiac signals via blind deconvolution: A source-filter approach," in
Comput. in Cardiol., pp. 805-808, Sept 2014.
[22] L. Sörnmo, "A model-based approach to qrs delineation," Comput. Biomed.
Res., vol. 20, no. 6, pp. 526 - 542, 1987.
[23] M. E. Nygårds and L. Sörnmo, "Delineation of the qrs complex using the
envelope of the e.c.g.," Med. Biol. Eng. Comput., vol. 21,
pp. 538-547, Sep 1983.
[24] L. Sörnmo, "A model-based approach to qrs delineation," Comput. Biomed.
Res., vol. 20, no. 6, pp. 526 - 542, 1987.
[25] P. Laguna, R. Jané, and P. Caminal, "Automatic detection of wave boundaries
in multilead ecg signals: Validation with the cse database," Comput.
Biomed. Res., vol. 27, no. 1, pp. 45 - 60, 1994.
[26] L. Clavier, J. M. Boucher, R. Lepage, J. J. Blanc, and J. C. Cornily,
"Automatic p-wave analysis of patients prone to atrial fibrillation,"
Med. Biol. Eng. Comp., vol. 40, pp. 63-71, Jan 2002.
[27] E. B. Mazomenos, D. Biswas, A. Acharyya, T. Chen, K. Maharatna, J. Rosengarten,
J. Morgan, and N. Curzen, "A low-complexity ecg feature extraction algorithm
for mobile healthcare applications," IEEE J. Biomed. Health Informat.,
vol. 17, pp. 459-469, March 2013.
[28] S. Yazdani and J. M. Vesin, "Adaptive mathematical morphology for qrs fiducial
points detection in the ecg," in Comput. in Cardiol., pp. 725-728,
Sept 2014.
[29] A. Goldberger, L. Amaral, L. Glass, J. Hausdorff, P. C. Ivanov, R. Mark,
J. Mietus, G. Moody, C. Peng, and H. Stanley, "Physiobank, physiotoolkit,
and physionet: Components of a new research resource for complex physiologic
signals." Circulation, vol. 101, no.23, pp. e215-e220, 2000.
[30] R. Mark and G. Moody, "Mit-bih arrhythmia database 1997," URL
http://ecgmit.edu/dbinfo. html, 1997.
[31] P. Laguna, R. G. Mark, A. Goldberg, and G. B. Moody, "A database for
evaluation of algorithms for measurement of qt and other waveform intervals
in the ecg," in Comput. in Cardiol., pp. 673-676, Sep 1997.
[32] J. Welch, P. Ford, R. Teplick, and R. Rubsamen, "The massachusetts general
hospital-marquette foundation hemodynamic and electrocardiographic
database-comprehensive collection of critical care waveforms,"
Clinical Monitoring, vol. 7, no. 1, pp. 96-97, 1991.
[33] G. B. Moody and R. G. Mark, "The impact of the mit-bih arrhythmia database,"
IEEE Eng. Med. Biol. Mag., vol. 20, pp. 45-50, May 2001.
[34] A. Taddei, A. Biagini, G. Distante, M. Emdin, M. G. Mazzei, P. Pisani,
N. Roggero, M. Varanini, R. G. Mark, G. B. Moody, L. Braaksma, C. Zeelenberg,
and C. Marchesi, "The european st-t database: development, distribution and
use," in Comput. in Cardiol., pp. 177-180, Sep 1990.
[35] G. B. Moody and R. G. Mark, "Development and evaluation of a 2-lead ECG
analysis program," in Comput. in Cardiol., pp. 39-44, 1982.
[36] V. X. Afonso, "Ecg qrs detection," Biomedical Digital Signal
Processing, pp. 237-264, 1993.
[37] G. D. Pinna, R. Maestri, and A. Mortara, "Estimation of arterial blood
pressure variability by spectral analysis: comparison between finapres and
invasive measurements," Physiol. Meas., vol. 17, no. 3, pp. 147-149,
1996.
[38] M. Elgendi, M. Jonkman, and F. DeBoer, "Frequncy bands effects on qrs
detection," in Proc. Int. Conf. Bio-Inspired Syst. Signal Process.,
2010.
[39] J. J. Gierałtowski, K. Ciuchciński, I. Grzegorczyk, K. Kośna, M. Soliński,
and P. Podziemski, "Heart rate variability discovery: Algorithm for
detection of heart rate from noisy, multimodal recordings," in Comput.
in Cardiol., pp. 253-256, Sept 2014.
[40] S. Teo, B. Yang, D. Huan, M. Christopher, and Y. Su, "Robust detection of
heart beats using ecg, bp and eeg signals," Comput. in Cardiol.,
vol. 41, 2014.
校內:2022-07-01公開