簡易檢索 / 詳目顯示

研究生: 范雅茱
Ya-Chu-Fan,
論文名稱: 微結構及厚度對發泡無機聚合物工程性質之影響
Effects of Microstructure and Thickness on the Engineering Properties of Foamed Inorganic Polymers
指導教授: 黃忠信
HUANG, JONG-SHIN
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 133
中文關鍵詞: 發泡無機聚合物泡沫孔徑穿透損失
外文關鍵詞: Foamed inorganic polymer, Cell size, Transmission loss
相關次數: 點閱:149下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以30%高爐爐石粉與70%煅燒高嶺土之混合物,當作
    無機聚合物之原料,並添加氫氧化鈉及矽酸鈉溶液加以攪拌,再
    採用機械發泡澆鑄方式,製作不同密度及厚度之發泡無機聚合
    物。發泡無機聚合物之配比設計,包含密度0.7、0.6、0.5 及0.4g/cm3
    共四種。另外,製作不同厚度之發泡無機聚合物單層板,包括10、
    8、6 及4cm 共四種。首先,針對無機聚合物漿體進行黏度試驗,
    並量測不同密度發泡無機聚合物之吸水率、孔徑分佈、抗壓強度
    及抗彎強度。同時,量測並比較不同密度及厚度發泡無機聚合物
    單層板於其表面批土前後之噪音穿透損失值。最後,由穿透損失
    值獲得最佳厚度及最佳密度,再依此最佳厚度及密度,設計三種
    不同泡沫孔徑之發泡無機聚合物單層板,並量測其穿透損失值。
    由微結構及力學性質之試驗結果顯示,本研究所製作之發泡
    無機聚合物,其品質控制已達均一性。另外,由穿透損失試驗結
    果可知,發泡無機聚合物批土前,最佳厚度為8cm,最佳密度則
    為0.6 g/cm3,批土後之發泡無機聚合物,試體厚度和密度對其穿
    透損失值影響不大。本研究所探討三種不同泡沫孔徑,厚度為8cm
    且密度0.6 g/cm3 之發泡無機聚合物單層板中,最大泡沫孔徑約為
    最小者之3 倍,其批土前後之穿透損失值,並不因泡沫孔徑變化
    而有所差異。

    A combination of 30 wt% blast furnace slag and 70 wt.%
    metakaolin was used as a raw material for the production of inorganic
    polymers. Foamed inorganic polymers with various density and
    thickness were made by using the alkali activating solution of sodium
    hydroxide and sodium silicate and the mechanical foaming process.
    Four different densities including 0.4, 0.5, 0.6 and 0.70.g/cm3 and four
    different thicknesses of 4, 6, 8 and 10cm of foamed inorganic
    polymers were produced. At first, the viscosity, water absorption,
    pore size distribution, compressive strength and flexural strength of
    the foamed inorganic polymer specimens were tested. Also, the
    transmission loss of the foamed inorganic polymers with different
    density and thickness were measured and compared to each other to
    evaluate the effects of density and thickness. Consequently, the
    optimum density and thickness were determined from experimental
    results. Under the condition of the obtained optimum density and
    thickness, the transmission losses of foamed inorganic polymers with
    three different cell sizes were measured and then compared.
    The microstructure characterization and the experimental results
    of mechanical properties indicate that the quality control of foamed
    inorganic polymers we produced is good. In addition, the optimum
    thickness and density of foamed inorganic polymers without surface
    coating are found to be 8cm and 0.6g/cm3 respectively from the
    experimental measurements of transmission loss. However, theeffects of thickness and density become insignificant if foamed
    inorganic polymers are coated on their both surfaces. Here, the
    effect of cell size on the transmission loss of foamed inorganic
    polymers with a density of 0.6g/cm3 and a thickness of 8cm can be
    neglected even the larger cell size is 3 times of the smaller cell size.

    摘要 I ABSTRACT II 致謝 IV 目錄 VI 表目錄 X 圖目錄 XII 1.1 研究動機 1 1.2 研究目的 2 1.3 本文組織與內容 3 第二章 文獻回顧 4 2.1 輕質混凝土 4 2.2 泡沫混凝土 5 2.2.1 泡沫混凝土之種類 5 2.2.2 泡沫混凝土之不穩定性6 2.3 無機聚合膠結材 7 2.3.1 無機聚合膠結材之優點 8 2.3.2 無機聚合膠結材之組成 9 2.3.1.1 高嶺土 9 2.3.1.2 爐石粉 10 2.3.1.3 鹼金屬矽酸鹽溶液 10 2.3.3 無機聚合膠結材之反應 11 2.3.4 無機聚合膠結材之結構 12 2.4 材料聲學性質 12 2.4.1聲音之基本參數 13 2.4.2 聲波傳遞的基本理論 14 2.4.3 材料之吸音與隔音 16 2.4.4 材料之隔音量測 17 2.4.4.1迴響室與無響室 17 2.4.5 材料之吸音量測 18 第三章 試驗方法與步驟 24 3.1試驗規劃 24 3.1.1 試驗目的 24 3.1.2 試驗變數 24 3.2 試驗材料及設備 25 3.2.1 試驗材料 25 3.2.2 試驗設備 27 3.3 試驗方法 29 3.3.1 高嶺土之煅燒過程 29 3.3.2 發泡無機聚合物試體製作29 3.3.3 發泡無機聚合物物理性質試驗 30 3.3.3.1 物理試驗 30 3.3.3.1.1 傅立葉紅外線光譜分析(FTIR) 30 3.3.3.1.2 黏度試驗 30 3.3.3.1.3 流度試驗 31 3.3.3.1.4 吸水率試驗 31 3.3.3.1.5 孔徑分佈率試驗 32 3.3.3.2 力學試驗 32 3.3.3.2.1 抗壓強度試驗 33 3.3.3.2.1 抗彎強度試驗 33 3.3.3.3 聲學試驗 34 3.3.3.3.1 單層板穿透損失試驗 34 3.3.3.3.2 吸音率試驗 36 第四章 試驗結果與討論 63 4.1 發泡無機聚合物之物理試驗 63 4.1.1 傅立葉紅外線光譜分析(FTIR) 63 4.1.2 黏度試驗 64 4.1.3 流度試驗 64 4.1.4 吸水率試驗 65 4.1.5 孔徑分佈率試驗 65 4.2 發泡無機聚合物之力學試驗 66 4.2.1 抗壓試驗 66 4.2.2 抗彎試驗 67 4.3 發泡無機聚合物之聲學試驗 68 4.3.1 穿透損失試驗 68 4.3.1.1 不同厚度單層板之穿透損失 69 4.3.1.2 不同密度單層板之穿透損失 70 4.3.1.3 密度0.6g/cm3且厚度8cm三種泡沫孔徑單層板之穿透損失 71 4.3.1.4 單層板之穿透損失比較 72 4.3.2 吸音率試驗 72 4.3.2.1 不同泡沫孔徑之吸音率比較 73 4.3.2.2不同密度之吸音率比較 73 4.3.2.3批土前後之吸音率比較 73 4.4 溫度對於高嶺土無機聚合膠結材拌合之影響 74 第五章 結論與建議 123 5.1 結論 123 5.2 建議 124 參考文獻 125 附錄 129

    [1] 王怡雯,「泡沫無機聚合物之物理性質」,成功大學土木工程研究所碩士論文,2009。
    [2] 黃忠信,《土木材料,三民書局》,2003。
    [3] 代新祥,「鹼激活土聚水泥的製備、結構與性能」,博士論文,華南理中大學,2005。
    [4] Davidovits J., “Geopolymers : Inorganic Polymeric New
    Materials ,’’Journal of Thermal Analysis , Vol.37 , 1633-1656 ,1991。
    [5] Davidovits J., 30 Years of Successes and Failures in Geopolymer Applications. Market Trends and Potential Breakthroughs,Geopolymer 2002 International Conference, October 28-29, 2002。
    [6] Xu H., Van Deventer J.S.J., “The geopolymerisation of
    alumino-silicate minerals” , Int. J. Miner. Process. Vol. 59,pp.247–266, 2000。
    [7] 陳秋艷、那琼,「偏高嶺土在我國的潛在應用」,礦業研究與開
    發,第二十四卷,第四期,第31-33 頁,2004 年。
    [8] Davidovits J., Davidovits R., James C., “Chemistry of geopolymeric systems terminology”, Proceeding of Geopolymer 99 Second International Conference , pp.9-37 , 1999。
    [9] Van Deventer J.S.J., van Jaarsveld J.G.S.,”Effect of the Alkali Metal Activator on the Properties of Fly Ash-Based Geopolymers”,Industrial & Engineering Chemistry Research ,Vol.38 , No.10 , pp3932-3941 , 1999。
    [10] Davidovits, J., “Early high-strength mineral polymer,” United States Patent 4,509,985, 1985。
    [11] Davidovits, J., “Method for obtaining a geopolymeric binder allowing to stabilize, solidify and consolidate toxic or waste materials,” Uni ted States Patent 5,349,118, 1994。
    [12] 金漫彤、樓梅曉、韓懁芬,「摻加礦渣的土壤聚合物對重金屬的固化」,浙江工業大學學報,第34 卷第6 期,第599-602 頁,2006。
    [13] Xu, H., Van Deventer, J. S. J. and Lukey, G. C., “Effect of alkali metals on the preferential geopolymerization of stilbite/kaolinite mixtures,” International Engineering Chemical Research, Vol. 40,
    pp. 3749-3756, 2001。
    [14] Xu, H. and Van Deventer, J. S. J., “The geopolymerisation of alumino- silicate minerals,” International Journal Minerals Process,Vol. 59, pp. 247-266, 2000。
    [15] 蘇德勝,《噪音原理及控制》,臺隆書局,1991。
    [16] 蔡國隆、王光賢、涂聰賢,《聲學原理與噪音量測控制》,全華科技,2005。
    [17] 杜功煥,朱哲民,龚秀芬,《聲學基礎(上,下) 》,第一版,1981。
    [18] 蔣興華,「無機顆粒填充聚合物復合材料隔聲性能及機理的研究」,華南理工大學化工過程機械論文,2004。
    [19] 曾一航,「吸隔音材料性能之理論探討」,國立台灣大學工程科學及海洋工程論文,2004。
    [20] 聲音透過損失之實驗測定法,CNS 8466。
    [21] 陳金文,《建築音響學及其應用:演藝廳及攝影棚實例》,科技圖書,2001 年。
    [22] 陳金文,「15186-1 聲強及聲壓量測法於隔音等級之應用,標準與檢驗雜誌37 期」,P-40-48,91 年。
    [23] 胡宛齡「穿透損失與吸音率量測自動化及量測參數比較之研究」,成功大學系統暨船舶機店工程論文,2007。
    [24] 盧士一,「防音材料性能研究-材料穿透損失測定系統之建立」,行政院勞工安全衛生研究所研究報告,2003。
    [25] 張渝文,「水庫淤泥應用於無機聚合物膠結材」,成功大學土木論文,2008。

    下載圖示 校內:2013-07-26公開
    校外:2013-07-26公開
    QR CODE