簡易檢索 / 詳目顯示

研究生: 陳桂銘
Chen, Gui-Ming
論文名稱: 嚴重脊椎側彎患者之電腦輔助雙骨盆釘路徑規劃與生物力學分析
Computer-Assisted Planning and Biomechanical Analysis of Dual Pelvic Screw Implantation in Patients with Severe Scoliosis
指導教授: 方晶晶
Fang, Jing-Jing
陳重德
Chen, Chung-De
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2026
畢業學年度: 114
語文別: 中文
論文頁數: 115
中文關鍵詞: 嚴重脊椎側彎雙骨盆釘植釘路徑規劃生物力學分析
外文關鍵詞: Severe scoliosis, Dual pelvic screws, Screw trajectory planning, Biomechanical analysis
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 針對嚴重脊椎側彎患者,臨床上多採用長節段後融合術治療,有時會延伸至骨盆以雙側雙骨盆釘固定增加脊椎的穩定性。嚴重脊椎側彎且骨盆變形或需接受二次手術的患者,骨盆可植入雙骨釘的安全空間有限,且固定強度需求更高,有術前植釘規劃必要性。以人工規劃骨盆植釘路徑仰賴醫師的臨床經驗,難以判斷固定性佳的植釘路徑與尺寸。
    本研究開發電腦輔助雙骨盆釘植釘規劃軟體,透過骨盆解剖特徵,基於臨床安全需求的幾何拘束條件,半自動計算骨盆內安全植釘路徑及配合該路徑的最適合尺寸。我們比較三例人工規劃與本軟體規劃嚴重脊椎側彎案例的植釘路徑差異,以實作模型檢驗本方法的可行性。結果顯示,人工規劃植釘路徑未能完全滿足臨床安全需求,本半自動植釘規劃軟體則可完全滿足。
    同時,分析不同路徑規劃與植釘尺寸組合下的骨盆釘力學表現。生物力學分析顯示,側彎患者在屈曲、伸展、左右側彎或軸向旋轉姿勢下,骨盆釘最大等效應力為438MPa,小於材料降伏強度;最大軸向力為181N,小於骨盆釘拔出強度。
    本研究開發的半自動化植釘規劃軟體能根據個體骨盆解剖構造計算可行植釘路徑,同時最大化配合該路徑的骨盆釘尺寸,經生物力學分析模擬,植釘規劃有較低固定失效風險,可提供術前植釘路徑的建議。

    This study presents a computer-assisted planning approach for bilateral dual pelvic screw implantation in patients with severe scoliosis, particularly those with pelvic deformity or undergoing revision surgery. Biomechanical analysis was conducted to evaluate the fixation stability of the planned constructs. Based on clinically defined safety requirements, geometric constraints were established to identify safe osseous corridors for dual pelvic screw placement and to determine the maximum allowable screw dimensions for each trajectory. Physical models were used to verify the feasibility of the proposed planning approach. Subsequently, patient-specific finite element models were constructed based on the planned screw trajectories and dimensions to simulate loading induced by spinal motion and body weight, and to analyze the biomechanical behavior of the pelvic screws.
    The automated pelvic screw planning software was applied to three patients with severe scoliosis, and the planning results satisfied the prescribed safety clearances from critical anatomical structures while providing recommendations for the maximum allowable screw diameter and length. Biomechanical analysis indicated that the maximum von Mises stress remained below the material's yield strength, and that axial forces were lower than the commonly reported pull-out force.
    The proposed automatic planning approach enables the computation of feasible screw trajectories based on patient-specific pelvic anatomy, and biomechanical evaluation indicates a lower risk of fixation failure. This approach may provide useful guidance for preoperative planning of dual pelvic screw implantation in complex scoliosis cases.

    摘要 I 致謝 V 目錄 VI 表目錄 VIII 圖目錄 IX 第一章 前言 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 本文架構 2 第二章 文獻回顧 4 第三章 骨盆釘植釘規劃軟體 19 3.1 植釘規劃的設計原則 19 3.2 前處理 21 3.3 骨盆釘植釘路徑 27 3.4 軟體架構 32 第四章 人體研究雙骨盆釘植釘規劃 37 4.1 規劃實例 37 4.2 實作驗證 45 第五章 生物力學分析 52 5.1 力學模型與參數 52 5.2 力學分析結果 66 第六章 討論、結論與未來展望 86 6.1 討論 86 6.2 結論 91 6.3 未來展望 91 參考文獻 93

    [1] Zhang, Q., Chon, T., Zhang, Y., Baker, J. S., and Gu, Y., "Finite element analysis of the lumbar spine in adolescent idiopathic scoliosis subjected to different loads," Computers in biology and medicine, Vol.136, p.104745, 2021.
    [2] Lonstein, J. E., "Scoliosis: surgical versus nonsurgical treatment," Clinical Orthopaedics and Related Research®, Vol.443, pp.248-259, 2006.
    [3] Tumialán, L. M. and Mummaneni, P. V., "Long-segment spinal fixation using pelvic screws," Neurosurgery, Vol.63, No.3, pp.A183-A190, 2008.
    [4] Santos, E. R. G., Sembrano, J. N., Mueller, B., and Polly, D. W., "Optimizing iliac screw fixation: a biomechanical study on screw length, trajectory, and diameter," Journal of Neurosurgery: Spine, Vol.14, No.2, pp.219-225, 2011.
    [5] Goldberg, C. J., Moore, D. P., Fogarty, E. E., and Dowling, F. E., "Scoliosis: a review," Pediatric surgery international, Vol.24, pp.129-144, 2008.
    [6] Horng, M.-H., Kuok, C.-P., Fu, M.-J., Lin, C.-J., and Sun, Y.-N., "Cobb angle measurement of spine from X‐ray images using convolutional neural network," Computational and mathematical methods in medicine, Vol.2019, No.1, p.6357171, 2019.
    [7] Janicki, J. A. and Alman, B., "Scoliosis: Review of diagnosis and treatment," Paediatrics & child health, Vol.12, No.9, pp.771-776, 2007.
    [8] Smith, J. S., Fu, K.-M., Urban, P., and Shaffrey, C. I., "Neurological symptoms and deficits in adults with scoliosis who present to a surgical clinic: incidence and association with the choice of operative versus nonoperative management," Journal of Neurosurgery: Spine, Vol.9, No.4, pp.326-331, 2008.
    [9] Rusli, M., Putra, N. K., Dahlan, H., and Sahputra, R. E., "Biomechanical analysis of correction force and Cobb angle in a simple model of scoliotic spine fixation," in AIP Conference Proceedings, 2019.
    [10] Maruyama, T. and Takeshita, K., "Surgical treatment of scoliosis: a review of techniques currently applied," Scoliosis, Vol.3, pp.1-6, 2008.
    [11] Moen, K. Y. and Nachemson, A. L., "Treatment of scoliosis: an historical perspective," Spine, Vol.24, No.24, p.2570, 1999.
    [12] Shen, F. H., Mason, J. R., Shimer, A. L., and Arlet, V. M., "Pelvic fixation for adult scoliosis," European Spine Journal, Vol.22, pp.265-275, 2013.
    [13] El Dafrawy, M. H., Raad, M., Okafor, L., and Kebaish, K. M., "Sacropelvic fixation: a comprehensive review," Spine deformity, Vol.7, pp.509-516, 2019.
    [14] Moshirfar, A., Rand, F. F., Sponseller, P. D., Parazin, S. J., Khanna, A. J., Kebaish, K. M., Stinson, J. T., and Riley III, L. H., "Pelvic fixation in spine surgery: historical overview, indications, biomechanical relevance, and current techniques," JBJS, Vol.87, No.suppl_2, pp.89-106, 2005.
    [15] Jain, A., Hassanzadeh, H., Strike, S. A., Menga, E. N., Sponseller, P. D., and Kebaish, K. M., "Pelvic Fixation in Adult and Pediatric Spine Surgery: Historical Perspective, Indications, and Techniques: AAOS Exhibit Selection," J Bone Joint Surg Am, Vol.97, No.18, pp.1521-8, Sep 16, 2015.
    [16] Esmende, S. M., Shah, K. N., and Daniels, A. H., "Spinopelvic fixation," JAAOS-Journal of the American Academy of Orthopaedic Surgeons, Vol.26, No.11, pp.396-401, 2018.
    [17] Kebaish, K. M., "Sacropelvic fixation: techniques and complications," Spine, Vol.35, No.25, pp.2245-2251, 2010.
    [18] McCord, D. H., Cunningham, B. W., Shono, Y., Myers, J. J., and McAfee, P. C., Biomechanical analysis of lumbosacral fixation, in Lumbar Fusion and Stabilization. 1993, Springer. p. 259-277.
    [19] MF, O., "Sacropelvic instrumentation: anatomic and biomechanical zones of fixation," Semin Spine Surg, Vol.16, pp.76-90, 2004.
    [20] Kostuik, J. P., "Spinopelvic fixation," Neurology India, Vol.53, No.4, pp.483-488, 2005.
    [21] Dayer, R., Ouellet, J. A., and Saran, N., "Pelvic fixation for neuromuscular scoliosis deformity correction," Current reviews in musculoskeletal medicine, Vol.5, pp.91-101, 2012.
    [22] Kostuik, J. P. and Hall, B. B., "Spinal fusions to the sacrum in adults with scoliosis," Spine, Vol.8, No.5, pp.489-500, 1983.
    [23] Agrawal, H., Sharma, A., Singh, V., Naseem, A., Gaddikeri, M., and Amin, A., "Long-segment fixation versus short-segment fixation with instrumentation of index vertebra for thoracolumbar fractures," Surgical Neurology International, Vol.13, p.233, 2022.
    [24] Scoville, J. P., Joyce, E., Dailey, A. T., and Mazur, M. D., "A radiological analysis of pelvic fixation trajectories: patient series," Journal of Neurosurgery: Case Lessons, Vol.6, No.17, 2023.
    [25] Sohn, S., Park, T. H., Chung, C. K., Kim, Y. J., Jang, J. W., Han, I.-b., and Lee, S. J., "Biomechanical characterization of three iliac screw fixation techniques: a finite element study," Journal of Clinical Neuroscience, Vol.52, pp.109-114, 2018.
    [26] Phelps, B. M., Ramey, W. L., and Hurlbert, R. J., "Sacral/Pelvic Fixation: New Tools and Techniques," Neurosurgery Clinics, Vol.36, No.1, pp.41-51, 2025.
    [27] Harrop, J. S., Jeyamohan, S. B., Sharan, A., Ratliff, J., and Vaccaro, A. R., "Iliac bolt fixation: an anatomic approach," Clinical Spine Surgery, Vol.22, No.8, pp.541-544, 2009.
    [28] Zheng, Z.-M., Yu, B.-S., Chen, H., Aladin, D. M., Zhang, K.-B., Zhang, J.-F., Liu, H., Luk, K. D., and Lu, W. W., "Effect of iliac screw insertion depth on the stability and strength of lumbo-iliac fixation constructs: an anatomical and biomechanical study," Spine, Vol.34, No.16, pp.E565-E572, 2009.
    [29] Tis, J. E., Helgeson, M., Lehman, R. A., and Dmitriev, A. E., "A biomechanical comparison of different types of lumbopelvic fixation," Spine, Vol.34, No.24, pp.E866-E872, 2009.
    [30] Rhee, W.-T., You, S.-H., Jang, Y.-G., and Lee, S.-Y., "Lumbo-sacro-pelvic fixation using iliac screws for the complex lumbo-sacral fractures," Journal of Korean Neurosurgical Society, Vol.42, No.6, p.495, 2007.
    [31] Keorochana, G., Arirachakaran, A., Setrkraising, K., and Kongtharvonskul, J., "Comparison of complications and revisions after sacral 2 alar iliac screw and iliac screw fixation for sacropelvic fixation in pediatric and adult populations: systematic review and meta-analysis," World Neurosurgery, Vol.132, pp.408-420. e1, 2019.
    [32] Elder, B. D., Ishida, W., Lo, S.-F. L., Holmes, C., Goodwin, C. R., Kosztowski, T. A., Bydon, A., Gokaslan, Z. L., Wolinsky, J.-P., and Sciubba, D. M., "Use of S2-alar-iliac screws associated with less complications than iliac screws in adult lumbosacropelvic fixation," Spine, Vol.42, No.3, pp.E142-E149, 2017.
    [33] von Glinski, A., Elia, C. J., Wiginton IV, J. G., Ansari, D., Pierre, C., Ishak, B., Yilmaz, E., Blecher, R., Dettori, J. R., and Hayman, E., "Iliac screw fixation revisited: improved clinical and radiologic outcomes using a modified iliac screw fixation technique," Clinical Spine Surgery, Vol.35, No.1, pp.E127-E131, 2022.
    [34] Wu, A.-M., Chen, D., Chen, C.-H., Li, Y.-Z., Li Tang, L. T., Phan, K., Singh, K., Haws, B. E., Vanni, D., and Mosley, Y. I., "The technique of S2-alar-iliac screw fixation: a literature review," 2017.
    [35] O’Brien, J. R., Warren, D. Y., Bhatnagar, R., Sponseller, P., and Kebaish, K. M., "An anatomic study of the S2 iliac technique for lumbopelvic screw placement," Spine, Vol.34, No.12, pp.E439-E442, 2009.
    [36] De la Garza Ramos, R., Nakhla, J., Sciubba, D. M., and Yassari, R., "Iliac screw versus S2 alar-iliac screw fixation in adults: a meta-analysis," Journal of Neurosurgery: Spine, Vol.30, No.2, pp.253-258, 2018.
    [37] Yilmaz, E., Abdul-Jabbar, A., Tawfik, T., Iwanaga, J., Schmidt, C. K., Chapman, J., Blecher, R., Tubbs, R. S., and Oskouian, R. J., "S2 alar-iliac screw insertion: technical note with pictorial guide," World neurosurgery, Vol.113, pp.e296-e301, 2018.
    [38] Arora, A. and Berven, S., "Challenges and complications in freehand S2-alar-iliac spinopelvic fixation and the potential for robotics to enhance patient safety," Global Spine Journal, Vol.12, No.2_suppl, pp.45S-52S, 2022.
    [39] Liu, G., Hasan, M. Y., and Wong, H.-K., "Subcrestal iliac-screw: a technical note describing a free hand, in-line, low profile iliac screw insertion technique to avoid side-connector use and reduce implant complications," Spine, Vol.43, No.2, pp.E68-E74, 2018.
    [40] von Glinski, A., Yilmaz, E., Ishak, B., Ramey, W., Jack, A., Iwanaga, J., Abdul-Jabbar, A., Oskouian, R. J., Tubbs, R. S., and Chapman, J. R., "Neurovascular relations in modified iliac screws and traditional iliac screw: anatomic study," World Neurosurgery, Vol.134, pp.e93-e97, 2020.
    [41] Tanasansomboon, T., Tejapongvorachai, T., Yingsakmongkol, W., Limthongkul, W., Kotheeranurak, V., and Singhatanadgige, W., "Minimally invasive percutaneous modified iliac screw placement using intraoperative navigation: a technical note," World Neurosurgery, Vol.146, pp.240-245, 2021.
    [42] Sohn, S., Chung, C. K., Kim, Y. J., Kim, C. H., Park, S. B., and Kim, H., "Modified iliac screw fixation: technique and clinical application," Acta neurochirurgica, Vol.158, pp.975-980, 2016.
    [43] Guler, U. O., Cetin, E., Yaman, O., Pellise, F., Casademut, A. V., Sabat, M. D., Alanay, A., Grueso, F. S. P., Acaroglu, E., and Group, E. S. S., "Sacropelvic fixation in adult spinal deformity (ASD); a very high rate of mechanical failure," European Spine Journal, Vol.24, pp.1085-1091, 2015.
    [44] Ebata, S., Ohba, T., Oba, H., and Haro, H., "Bilateral dual iliac screws in spinal deformity correction surgery," Journal of Orthopaedic Surgery and Research, Vol.13, pp.1-8, 2018.
    [45] Bourghli, A., Boissiere, L., and Obeid, I., "Dual iliac screws in spinopelvic fixation: a systematic review," European Spine Journal, Vol.28, pp.2053-2059, 2019.
    [46] Fujibayashi, S., Neo, M., and Nakamura, T., "Palliative dual iliac screw fixation for lumbosacral metastasis," Journal of Neurosurgery: Spine, Vol.7, No.1, pp.99-102, 2007.
    [47] Tang, Z., Hu, Z., Zhu, Z., Qiao, J., Mao, S., Ling, C., Qiu, Y., and Liu, Z., "The Utilization of Dual Second Sacral Alar‐Iliac Screws for Spinopelvic Fixation in Patients with Severe Kyphoscoliosis," Orthopaedic Surgery, Vol.14, No.7, pp.1457-1468, 2022.
    [48] Krieg, S. M., Sollmann, N., Ille, S., Albers, L., and Meyer, B., "Revision by S2-alar-iliac instrumentation reduces caudal screw loosening while improving sacroiliac joint pain—a group comparison study," Neurosurgical Review, Vol.44, No.4, pp.2145-2151, 2021.
    [49] Park, P. J., Lin, J. D., Makhni, M. C., Cerpa, M., Lehman, R. A., and Lenke, L. G., "Dual S2 alar-iliac screw technique with a multirod construct across the lumbosacral junction: obtaining adequate stability at the lumbosacral junction in spinal deformity surgery," Neurospine, Vol.17, No.2, p.466, 2020.
    [50] Uotani, K., Tanaka, M., Sonawane, S., Ruparel, S., Fujiwara, Y., Arataki, S., Yamauchi, T., and Misawa, H., "Comparative study of bilateral dual sacral-alar-iliac screws versus bilateral single sacral-alar-iliac screw for adult spine deformities," World Neurosurgery, Vol.156, pp.e300-e306, 2021.
    [51] Garrido, B. J. and Wood, K. E., "Navigated placement of iliac bolts: description of a new technique," The Spine Journal, Vol.11, No.4, pp.331-335, 2011.
    [52] Shaw, J. C., Routt, M. L. C., and Gary, J. L., "Intra-operative multi-dimensional fluoroscopy of guidepin placement prior to iliosacral screw fixation for posterior pelvic ring injuries and sacroiliac dislocation: an early case series," International orthopaedics, Vol.41, pp.2171-2177, 2017.
    [53] Schildhauer, T. A., McCulloch, P., Chapman, J. R., and Mann, F. A., "Anatomic and radiographic considerations for placement of transiliac screws in lumbopelvic fixations," Clinical Spine Surgery, Vol.15, No.3, pp.199-205, 2002.
    [54] Hasan, M. Y., Liu, G., Wong, H.-K., and Tan, J.-H., "Postoperative complications of S2AI versus iliac screw in spinopelvic fixation: a meta-analysis and recent trends review," The Spine Journal, Vol.20, No.6, pp.964-972, 2020.
    [55] Alzobi, O. Z., Alborno, Y., Toubasi, A., Derbas, J., Kayali, H., Nasef, H., Hantouly, A. T., Mudawi, A., Mahmoud, S., and Ahmed, G., "Complications of conventional percutaneous sacroiliac screw fixation of traumatic pelvic ring injuries: a systematic review and meta-analysis," European Journal of Orthopaedic Surgery & Traumatology, Vol.33, No.7, pp.3107-3117, 2023.
    [56] Nguyen, J. H., Buell, T. J., Wang, T. R., Mullin, J. P., Mazur, M. D., Garces, J., Taylor, D. G., Yen, C.-P., Shaffrey, C. I., and Smith, J. S., "Low rates of complications after spinopelvic fixation with iliac screws in 260 adult patients with a minimum 2-year follow-up," Journal of Neurosurgery: Spine, Vol.30, No.5, pp.635-643, 2019.
    [57] Ecker, T. M., Jost, J., Cullmann, J., Zech, W.-D., Djonov, V., Keel, M., Benneker, L. M., and Bastian, J. D., "Percutaneous screw fixation of the iliosacral joint: a case-based preoperative planning approach reduces operating time and radiation exposure," Injury, Vol.48, No.8, pp.1825-1830, 2017.
    [58] Atesok, K., Galos, D., Jazrawi, L. M., and Egol, K. A., "Preoperative Planning in Orthopaedic Surgery," Bulletin of the Hospital for Joint Diseases, Vol.73, No.4, 2015.
    [59] Lucas, J. F., Routt Jr, M. L. C., and Eastman, J. G., "A useful preoperative planning technique for Transiliac–Transsacral screws," Journal of Orthopaedic Trauma, Vol.31, No.1, pp.e25-e31, 2017.
    [60] Goerres, J., Uneri, A., Jacobson, M., Ramsay, B., De Silva, T., Ketcha, M., Han, R., Manbachi, A., Vogt, S., and Kleinszig, G., "Planning, guidance, and quality assurance of pelvic screw placement using deformable image registration," Physics in Medicine & Biology, Vol.62, No.23, p.9018, 2017.
    [61] Weisenthal, B. M., Doss, D. J., Henry, A. L., and Stephens, B. F., "Optimal trajectory and length of S2 alar iliac screws: a 3-dimensional computed-aided design study," Clinical Spine Surgery, Vol.32, No.7, pp.E335-E339, 2019.
    [62] Zhao, Y., Ma, Y., Wang, Q., Luo, H., Liu, J., and Lu, S., "Digital anatomical study and clinical application of the ideal S2 alar-lliac screw trajectory," BMC surgery, Vol.23, No.1, p.301, 2023.
    [63] Yang, Q., Feng, S., Song, J., Cheng, C., Liang, C., and Wang, Y., "Computer-aided automatic planning and biomechanical analysis of a novel arc screw for pelvic fracture internal fixation," Computer methods and programs in biomedicine, Vol.220, p.106810, 2022.
    [64] Yilmaz, E., von Glinski, A., Schildhauer, T., Iwanaga, J., Ishak, B., Abdul-Jabbar, A., Moisi, M., Oskouian, R. J., Tubbs, R., and Chapman, J. R., "What are the best trajectories for multiple iliac screw placement in spine surgeries? An anatomical, radiographical and morphometric cadaver analysis," Injury, Vol.51, No.6, pp.1294-1300, 2020.
    [65] Yu, B.-S., Zhuang, X.-M., Zheng, Z.-M., Li, Z.-M., Wang, T.-P., and Lu, W. W., "Biomechanical advantages of dual over single iliac screws in lumbo-iliac fixation construct," European Spine Journal, Vol.19, pp.1121-1128, 2010.
    [66] Zdero, R. and Bougherara, H., Orthopaedic biomechanics: a practical approach to combining mechanical testing and finite element analysis, in Finite element analysis. 2010, IntechOpen.
    [67] Papini, M., Zdero, R., Schemitsch, E., and Zalzal, P., "The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs," 2007.
    [68] Lee, C.-H., Hsu, C.-C., and Huang, P.-Y., "Biomechanical study of different fixation techniques for the treatment of sacroiliac joint injuries using finite element analyses and biomechanical tests," Computers in biology and medicine, Vol.87, pp.250-257, 2017.
    [69] Wähnert, D., Hoffmeier, K. L., Klos, K., Stolarczyk, Y., Fröber, R., Hofmann, G. O., and Mückley, T., "Biomechanical characterization of an osteoporotic artificial bone model for the distal femur," Journal of Biomaterials Applications, Vol.26, No.5, pp.565-579, 2012.
    [70] Pfeiffer, F. M., "The use of finite element analysis to enhance research and clinical practice in orthopedics," The journal of knee surgery, Vol.29, No.02, pp.149-158, 2016.
    [71] Zheng, Y., Li, J., Tam, A. Y.-C., Lee, T. T.-Y., Peng, Y., Cheung, J. C.-W., Wong, D. W.-C., and Ni, M., "Finite element modeling of clavicle fracture fixations: a systematic scoping review," Medical & Biological Engineering & Computing, pp.1-23, 2025.
    [72] Zheng, J., Yang, Y., Lou, S., Zhang, D., and Liao, S., "Construction and validation of a three-dimensional finite element model of degenerative scoliosis," Journal of orthopaedic surgery and research, Vol.10, No.1, p.189, 2015.
    [73] Poelert, S., Valstar, E., Weinans, H., and Zadpoor, A. A., "Patient-specific finite element modeling of bones," Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, Vol.227, No.4, pp.464-478, 2013.
    [74] Yang, H., Pan, A., Hai, Y., Cheng, F., Ding, H., and Liu, Y., "Biomechanical evaluation of multiple pelvic screws and multirod construct for the augmentation of lumbosacral junction in long spinal fusion surgery," Frontiers in Bioengineering and Biotechnology, Vol.11, p.1148342, 2023.
    [75] Shin, J. K., Lim, B.-Y., Goh, T. S., Son, S. M., Kim, H.-S., Lee, J. S., and Lee, C.-S., "Effect of the screw type (S2-alar-iliac and iliac), screw length, and screw head angle on the risk of screw and adjacent bone failures after a spinopelvic fixation technique: a finite element analysis," PloS one, Vol.13, No.8, p.e0201801, 2018.
    [76] Sun, Y., Fu, Y., Liu, F., Zhang, W., Ma, H., Li, Q., Zhou, D., and Fu, B., "Biomechanical tests and finite element analyses of pelvic stability using bilateral single iliac screws with different channels in lumbo-iliac fixation," Frontiers in Surgery, Vol.9, p.1035614, 2022.
    [77] 郭泰宏, "醫療影像軟體開發-基礎介面與三維實體模型重建," 機械工程學系, 國立成功大學, 2002.
    [78] Wong, T.-Y., Liu, J.-K., Fang, J.-J., Wu, T.-C., and Tu, Y.-H., "Use of the matching optimal symmetry plane method in planning surgical correction of facial asymmetry—a preliminary report of 20 patients," Journal of Oral and Maxillofacial Surgery, Vol.72, No.6, pp.1180. e1-1180. e13, 2014.
    [79] Herman, L., Popelka, S., and Hejlova, V., "Eye-tracking analysis of interactive 3d geovisualization," Journal of Eye Movement Research, Vol.10, No.3, p.10.16910/jemr. 10.3. 2, 2017.
    [80] Lenke, L. G., Betz, R. R., Harms, J., Bridwell, K. H., Clements, D. H., Lowe, T. G., and Blanke, K., "Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis," JBJS, Vol.83, No.8, pp.1169-1181, 2001.
    [81] 楊書宇, "基於體素的人體骨骼組織自動有限元素建模方法," 機械工程學系, 國立成功大學, 2025.
    [82] "Understanding Spinal Anatomy: Ligaments, Tendons and Muscles," <https://www.coloradospineinstitute.com/education/anatomy/ligaments-tendons-muscles/>, accessed on 2025/08/06.
    [83] Bazira, P. J., "Clinically applied anatomy of the pelvis," Surgery (Oxford), Vol.42, No.6, pp.364-372, 2024.
    [84] Schneider, T., "Chronic Groin Pain – More Than Just Osteitis Pubis," <https://newcastlesportsmedicine.com.au/hip/chronic-groin-pain/>, accessed on 2025/08/06.
    [85] Hu, P., Wu, T., Wang, H. z., Qi, X. z., Yao, J., Cheng, X. d., Chen, W., and Zhang, Y. z., "Biomechanical comparison of three internal fixation techniques for stabilizing posterior pelvic ring disruption: a 3D finite element analysis," Orthopaedic surgery, Vol.11, No.2, pp.195-203, 2019.
    [86] Goel, V. K., Monroe, B., Gilbertson, L., and Brinckmann, P., "Interlaminar shear stresses and laminae separation in a disc: finite element analysis of the L3-L4 motion segment subjected to axial compressive loads," Spine, Vol.20, No.6, pp.689-698, 1995.
    [87] Guan, Y., Yoganandan, N., Zhang, J., Pintar, F. A., Cusick, J. F., Wolfla, C. E., and Maiman, D. J., "Validation of a clinical finite element model of the human lumbosacral spine," Medical and Biological Engineering and Computing, Vol.44, No.8, pp.633-641, 2006.
    [88] Karpovych, O., Karpovych, I., Fedosov, O., Zhumar, D., Karakash, Y., Rimar, M., Kizek, J., and Fedak, M., "Structural Analysis of Joints Made of Titanium Alloy TI-6AL-4V and Stainless Steel AISI 321 with Developed Conical Contact Surfaces Obtained by Diffusion Welding," Materials, Vol.18, No.15, p.3596, 2025.
    [89] Oberkircher, L., Masaeli, A., Hack, J., Figiel, J., Bliemel, C., Ruchholtz, S., and Krüger, A., "Pull-out strength evaluation of cement augmented iliac screws in osteoporotic spino-pelvic fixation," Orthopaedics & Traumatology: Surgery & Research, Vol.107, No.7, p.102945, 2021.
    [90] Chanbour, H., Roth, S. G., Chen, J. W., Uppuganti, S., Nyman, J. S., Ali, M. A., Bonfield, C. M., Abtahi, A. M., Stephens, B. F., and Zuckerman, S. L., "Do Iliac Screws Placed Close to the Sciatic Notch Have Greater Pullout Strength?," Operative Neurosurgery, Vol.27, No.5, pp.549-556, 2024.
    [91] O'Brien, J. R., Yu, W., Kaufman, B. E., Bucklen, B., Salloum, K., Khalil, S., and Gudipally, M., "Biomechanical evaluation of S2 alar-iliac screws: effect of length and quad-cortical purchase as compared with iliac fixation," Spine, Vol.38, No.20, pp.E1250-E1255, 2013.

    QR CODE