| 研究生: |
郭育惟 Guo, Yui-Wei |
|---|---|
| 論文名稱: |
毫米流道熱沉內相變化材料奈米膠囊/奈米微粒懸浮液強制對流熱散逸特性之數值模擬 Numerical simulation on forced convection heat dissipation characteristics of water-based suspensions of PCM nanocapsules/nanoparticles in a mini-channel heat sink |
| 指導教授: |
何清政
Ho, Ching-Jeng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 奈米氧化鋁微粒 、擬渦旋 、相變化膠囊 、毫米流道 |
| 外文關鍵詞: | NEPCM, nanoparticles, mini-channel heat sink, pseudo-vorticity-velocity velocity formulation |
| 相關次數: | 點閱:125 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究擬以數值方法針對奈米氧化鋁微粒/相變化膠囊懸浮液於平行毫米熱沉流道內強制對流熱傳遞相關流動/溫度場特徵進行模擬分析,探討其對流熱散逸性能/效益。單一矩形毫米流道內三維流動場之數學模式係採用擬渦度-速度(Pseudo-Vorticity-Velocity)模式建構,並以有限差分/體積法建立離散數值模式。本研究所探討毫米熱沉底板厚度為5.0 mm,單一矩形流道之尺寸為:長50.0 mm、寬1.0 mm、高1.5 mm,且平行流道間隔板(鰭片)厚度為2.1 mm。數值模擬所考慮相關參數及其變化範圍為:奈米相變化膠囊懸浮液內含相變化材料體積分率, = 2%、10% (質量分率, 1.61%、8.05%);奈米流體內含氧化鋁體積分率, 2% (質量分率, 7.3%);進入單一流道之流體體積流量, =87.69~876.9 cm3/min ( = 200~ 2000);由熱沉底部所輸入熱通量, =10 W/cm2及20 W/cm2,。本研究所得數值模擬結果顯示:奈米相變化膠囊懸浮液在高流量及高濃度條件下流經毫米流道熱沉,相較於純水,可產生抑制壁溫及提升平均熱傳遞係數效益分別達2.3%與8.2%,並大幅降低熱沉之最大熱阻6.9%;至於奈米氧化鋁懸浮液,在低流量及高熱通量下流經毫米流道熱沉時,其壁溫抑制及平均熱傳遞係數增強之效益可分別達到2.6%及8.4%,且可致使熱沉之最大熱阻下降達4.8%。此外,奈米相變化懸浮液或奈米氧化鋁懸浮液,相較於純水,其黏度均呈大幅上升,導致所預測流經毫米熱沉時所致之壓降亦呈巨幅上升,可分別達4.5倍與1.5倍。
The present study aims to examine, via three-dimensional numerical simulations, laminar forced convection cooling efficacies of using water-based suspensions of nano-encapsulated PCM (NEPCM) or Al2O3 nanoparticles in a rectangular mini-channel heat sink. The geometric dimensions for a unit mini-channel of the multi-channel het sink considered are 1.5 mm in height, 1.0 mm in width, and 50.0 mm in length with a separating fin of thickness of 2.1 mm. A homogenous mixture formulation by means of the pseudo-vorticity-velocity formulation together with the energy equation was adopted to describe the three-dimensional heat and fluid flows of the water-based suspensions considered in a single mini-channel of the multi-channel heat sink. Numerical simulations for the laminar forced convection in the mini-channel heat sink have been performed for the relevant parameters in the following ranges: the volumetric fraction of PCM dispersed, ϕpcm= 2% and 10% (equivalently, the mass fraction of PCM, ωpcm= 1.61% and 8.05%); the volumetric fraction of Al2O3 nanoparticles dispersed, ϕnp= 2% (equivalently, the mass fraction of Al2O3 nanoparticles dispersed, ωnp= 7.3%); the volumetric flow rate entering single mini-channel, = 87.69 - 876.9 cm3/min (equivalently, = 200 – 2000); and the heat flux imposed on the bottom surface of the het sink, = 10 and 20 W/cm2. The numerical results obtained clearly reveal that using the water-based suspension of NEPCM to replace the pure water as the coolant in the mini-channel heat sink can produce marked enhancement of 2.3 % and 8.2% in the wall temperature suppression and the averaged heat transfer coefficient, respectively, under the condition of high flow rate and low heat flux. On the other hand, using the water-based suspension of Al2O3 nanoparticles as the coolant, enhancement of 2.6% and 8.4%, respectively, in suppressing the wall temperature and the averaged heat transfer coefficient of the mini-channel heat sink were predicted numerically. Adversely, resulted from their drastic increase in dynamic viscosity over the pure water, the pressure drop and the pumping power required for the water-based suspensions of NEPCM or Al2O3 nanoparticles through the mini-channel heat sink appear highly uplifted to 4.5 times and 1.5 times, respectively, compared with the pure water.
[1] D. B. T. a. R. Pease, "High-performance heat sinking for VLSI," IEEE Electron Device Letters, vol. 2, pp. 126-129, 1981.
[2] M. J. K. Todd M. Harms, Frank M. Gerner, "Developing convective heat transfer in deep rectangular microchannels," International Journal of Heat and Fluid Flow, vol. 20, pp. 149-157, 1999.
[3] P.-S. Lee, S. V. Garimella, and D. Liu, "Investigation of heat transfer in rectangular microchannels," International Journal of Heat and Mass Transfer, vol. 48, pp. 1688-1704, 2005.
[4] P.-S. Lee and S. V. Garimella, "Thermally developing flow and heat transfer in rectangular microchannels of different aspect ratios," International Journal of Heat and Mass Transfer, vol. 49, pp. 3060-3067, 2006.
[5] C. J. Ho, W.-C. Chen, and W.-M. Yan, "Experiment on thermal performance of water-based suspensions of Al2O3 nanoparticles and MEPCM particles in a minichannel heat sink," International Journal of Heat and Mass Transfer, vol. 69, pp. 276-284, 2014.
[6] A. B. S. Alquaity, S. A. Al-Dini, E. N. Wang, and B. S. Yilbas, "Numerical investigation of liquid flow with phase change nanoparticles in microchannels," International Journal of Heat and Fluid Flow, vol. 38, pp. 159-167, 2012.
[7] R. Sabbah, M. M. Farid, and S. Al-Hallaj, "Micro-channel heat sink with slurry of water with micro-encapsulated phase change material: 3D-numerical study," Applied Thermal Engineering, vol. 29, pp. 445-454, 2009.
[8] 劉彥均, "奈米相變化膠囊懸浮液於具平行/漸擴毫米流道熱沉內強制對流熱傳遞特性之比較研究," 碩士論文, 機械工程研究所, 國立成功大學, 2013.
[9] C. J. Ho, J. F. Lin, and S. Y. Chiu, "Heat transfer of solid–liquid phase-change material suspensions in circular pipes: effects of wall conduction," Numerical Heat Transfer, Part A: Applications, vol. 45, pp. 171-190, 2004.
[10] C. J. Ho, "A continuum model for transport phenomena in convective flow of solid–liquid phase change material suspensions," Applied Mathematical Modelling, vol. 29, pp. 805-817, 2005.
[11] 林宗慶, "相變化懸浮徵粒之過冷現象對直立矩形容器自然對流熱傳之影響," 碩士論文, 機械工程研究所, 國立成功大學, 2003.
[12] M. Harhira, S. K. Roy, and S. Sengupta, "Natural convection heat transfer from a vertical flat plate with phase change material suspensions," Journal of Enhanced Heat Transfer, vol. 4, 1997.
[13] 李政逸, "水基底奈米相變化乳液於水平圓管內層流強制對流熱傳遞特性之實驗研究," 碩士論文, 械械工程研究所, 國立成功大學, 2013.
[14] C. J. Ho, J. B. Huang, C. P. Chen, P. S. Tsai, and Y. M. Yang, "Forced convection performance of a MEPCM suspension through an iso-flux heated circular tube: an experimental study," Heat and Mass Transfer, vol. 48, pp. 487-496, 2011.
[15] S. Kondle, J. L. Alvarado, and C. Marsh, "Laminar flow forced convection heat transfer behavior of a phase change material fluid in microchannels," Journal of Heat Transfer, vol. 135, p. 052801, 2013.
[16] S. Choi and J. Eastman, "Enhancing thermal conductivity of fluids with nanoparticles," Argonne National Lab., IL (United States)1995.
[17] J. Maxwell, "A treatise on electricity and magnetism," Clarendon Press series, 1873.
[18] R. Hamilton and O. Crosser, "Thermal conductivity of heterogeneous two-component systems," Industrial & Engineering chemistry fundamentals, vol. 1, pp. 187-191, 1962.
[19] P. Keblinski, S. Phillpot, S. Choi, and J. Eastman, "Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids)," International journal of heat and mass transfer, vol. 45, pp. 855-863, 2002.
[20] J. A. Eastman, S. Phillpot, S. Choi, and P. Keblinski, "Thermal transport in nanofluids 1," Annu. Rev. Mater. Res., vol. 34, pp. 219-246, 2004.
[21] K. Khanafer and K. Vafai, "A critical synthesis of thermophysical characteristics of nanofluids," International Journal of Heat and Mass Transfer, vol. 54, pp. 4410-4428, 2011.
[22] 陳苗汶, "方形容器內奈米流體之自然對流熱傳模式與數值模擬研究," 碩士論文, 機械工程研究所, 國立成功大學, 2007.
[23] 張智揚, "氧化鋁-水奈米流體進口溫度及隨溫度變化熱物性質對圓管內層流對流熱傳遞性能之效應," 碩士論文, 機械工程研究所, 國立成功大學, 2012.
[24] C. J. Ho and F. Lin, "Numerical simulation of three‐dimensional incompressible flow by a new formulation," International Journal for Numerical Methods in Fluids, vol. 23, pp. 1073-1084, 1996.
[25] C. J. Ho and F. J. Tu, "Visualization and prediction of natural convection of water near its density maximum in a tall rectangular enclosure at high rayleigh numbers," Journal of Heat Transfer, vol. 123, p. 84, 2001.
[26] S. Kakaç, R. K. Shah, and W. Aung, Handbook of Single-Phase Convective Heat Transfer: Wiley New York et al., 1987.
[27] C. Popiel and J. Wojtkowiak, "Simple formulas for thermophysical properties of liquid water for heat transfer calculations (from 0 C to 150 C)," Heat Transfer Engineering, vol. 19, pp. 87-101, 1998.