簡易檢索 / 詳目顯示

研究生: 吳玫慧
Wu, Mei-Huey
論文名稱: 由土芽孢桿菌所分泌內切型纖維酵素透過獨特的自截斷過程增加酵素活性與熱穩定性
Enhancement of activity and thermostability of a Geobacillus endoglucanase via a unique self-truncation process
指導教授: 賀端華
Ho, Tuan-Hua
陳逸民
Chen, Yi-Min
學位類別: 博士
Doctor
系所名稱: 生物科學與科技學院 - 生物科技與產業科學系
Department of Biotechnology and Bioindustry Sciences
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 111
中文關鍵詞: 內切型纖維水解酵素自我截斷糖苷酶家族5土芽孢桿菌
外文關鍵詞: Endoglucanase, Self-truncation, GH family 5, Geobacillus
相關次數: 點閱:90下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 纖維素水解主要需要三種纖維水解酵素的協同作用:外切型纖維水解酵素、內切型纖維水解酵素和β-葡萄糖苷水解酵素。土芽孢桿菌G. 70PC53從台灣南部的稻草堆肥中所分離出來。GsCelA是一種由此嗜熱菌土芽孢桿菌(Geobacillus sp. 70PC53, G. 70PC53)分泌,蛋白全長為368個胺基酸的內切型纖維水解酵素。GsCelA歸類於醣苷水解酵素家族5 (glycoside hydrolase family 5, GH5),其蛋白質結構是典型的TIM-barrel結構。GsCelA酵素作用最適溫度為60℃,pH為5.0。純化後的GsCelA在高於10 ℃的溫度時會進行獨特的蛋白自我截斷作用,從GsCelA的C端移除53個胺基酸的胜肽,而此作用的最佳條件為pH 6-7。這種自我截斷作用並非由蛋白水解酵素的作用而截斷,此截斷作用會受到EDTA和EGTA的抑制,但二價金屬離子可增加自我截斷作用的效率。這種自我截斷作用也發生在原生菌地芽孢桿菌G. 70PC53所分泌的GsCelA,不過它會受到葡萄糖的濃度提高而抑制。在實驗中也發現GsCelA的C端胜肽鍊與非溶性受質蓬鬆化Avicel具有結合能力,並且也與革蘭氏陽性菌的細胞壁肽聚醣具有親和力。原菌自我截斷或者或利用蛋白質工程將GsCelA的C端截斷至60個胺基酸都可提高GsCelA的比活性並且使酵素在高溫更穩定。

    SUMMARY
    The endoglucanase GsCelA secreted from the thermophilic Geobacillus sp. 70PC53 exhibits excellent lignocellulolytic activity and high thermostability. This enzyme has an optimal temperature at 60℃ and an optimal pH at 5.0. GsCelA belongs to the glycoside hydrolase family 5 with a typical TIM-barrel structure. After the spontaneous self-truncation process, the smaller form GsCelA showed higher activity then that observed in the full-length enzyme. Results of MS-MS analysis indicated that 53 amino acids are removed from the C-terminus of GsCelA via the self-truncation process. This process is not due to the protease contamination, but it can be suppressed by EDTA and EGTA or be recovered by divalent metal ions. The self-truncation process also takes place in vivo in the native Geobacillus sp. 70PC53 strain. The spontaneous or engineered C-terminal truncation up to 60 amino acids from the C-terminus improves GsCelA’s specific activity and renders the enzyme more thermostable. To investigate the importance of specific amino acids on the enzymatic activity of GsCelA, site-directed mutagenesis and protein engineering approach were employed to replace amino acid residues unique to this enzyme. It was demonstrated that single mutations Y195T, D55S, G288T or D289L increase the activity of this enzyme by 30%.
    Key words: Endoglucanase, Self-truncation, GH family 5, Geobacillus

    Chinese Abstract (中文摘要) I Abstract II Acknowledgements VI Table of Contents VII Contents of Tables IX Contents of Figures X Abbreviations List XIII Chapter 1 Research Background 1 Chapter 2 A unique self-truncation of bacterial GH5 endoglucanases leads to enhanced activity and thermostability 5 2-1 Introduction 5 2-2 Materials and Methods 9 2-3 Results 19 2-4 Discussions 29 Chapter 3 Release of an endoglucanase modulated by protein self-truncation in Geobacillus sp. 70PC53 36 3-1 Introduction 36 3-2 Materials and Methods 40 3-3 Results 44 3-4 Discussion 49 Chapter 4 Conclusions 54 References 57 Tables 66 Figures 72

    Abdel-Banat, B. M. A., Hoshida, H., Ano, A., Nonklang, S., and Akada, R. High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? Applied Microbiology and Biotechnology 85, 861-867, 2010.
    Ahn, D. H., Kim, H., and Pack, M. Y. Cleavage of Bacillus subtilis endo-β-1,4-glucanase by B. megaterium Protease. Biotechnology Letters 15, 127-132, 1993.
    Andersen, N., Johansen, K. S., Michelsen, M., Stenby, E. H., Krogh, K. B. R. M., and Olsson, L. Hydrolysis of cellulose using mono-component enzymes shows synergy during hydrolysis of phosphoric acid swollen cellulose (PASC), but competition on Avicel. Enzyme and Microbial Technology 42, 362-370, 2008.
    Anraku, Y., and Satow, Y. Reflections on protein splicing: structures, functions and mechanisms. Proceedings of the Japan Academy, Series. B, Physical and Biological Sciences 85, 409-421, 2009.
    Ash, C., Farrow, J. A. E., Wallbanks, S., and Collins, M. D. Phylogenetic Heterogeneity of the genus Bacillus revealed by comparative-analysis of small-subunit-ribosomal Rna Sequences. Letters in Applied Microbiology 13, 202-206, 1991.
    Aspeborg, H., Coutinho, P. M., Wang, Y., Brumer, H., and Henrissat, B. Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). Biomed Central Genomics Evolutionary Biology 12, 186-201, 2012.
    Balan, V. Current challenges in commercially producing biofuels from lignocellulosic biomass. International Scholar Research Notes Biotechnology 2014, 31, 2014.
    Basit, A., and Akhtar, M. W. Truncation of the processive Cel5A of Thermotoga maritima results in soluble expression and several fold increase in activity. Biotechnology and Bioengineering 115, 1675-1684, 2018.
    Chang, C. J., Lee, C. C., Chan, Y. T., Trudeau, D. L., Wu, M. H., Tsai, C. H., Yu, S. M., Ho, T. H. D., Wang, A. H. J., Hsiao, C. D., Arnold, F. H. and Chao, Y. C. Exploring the mechanism responsible for cellulase thermostability by structure-guided recombination. PLoS One 11, e0147485, 2016.
    Denecke, J., De Rycke, R., and Botterman, J. Plant and mammalian sorting signals for protein retention in the endoplasmic reticulum contain a conserved epitope. European Molecular Biology Organization Journal 11, 2345-2355, 1992.
    Donk, P. J. A highly resistant thermophilic organism. Journal of Bacteriology 5, 373-374, 1920.
    Dror, A., Shemesh, E., Dayan, N., and Fishman, A. Protein engineering by random mutagenesis and structure-guided consensus of Geobacillus stearothermophilus lipase T6 for enhanced stability in methanol. Applied and Environmental Microbiology 80, 1515-1527, 2014.
    Ekinci, A. P., Dincer, B., Baltas, N., and Adiguzel, A. Partial purification and characterization of lipase from Geobacillus stearothermophilus AH22. Journal of Enzyme Inhibition and Medicinal Chemistry 31, 325-331, 2016.
    Fujihara, Y., and Ikawa, M. GPI-AP release in cellular, developmental, and reproductive biology. Journal of Lipid Research 57, 538-545, 2016.
    Fujio, Y., and Kume, S. Characteristics of a highly thermostable neutral protease produced from Bacillus stearothermophilus. World Journal of Microbiology and Biotechnology 7, 12-16, 1991.
    Han, N., Miao, H., Ding, J., Li, J., Mu, Y., Zhou, J., and Huang, Z. Improving the thermostability of a fungal GH11 xylanase via site-directed mutagenesis guided by sequence and structural analysis. Biotechnology for Biofuels 10, 133-145, 2017.
    Harwood, C. R., and Cranenburgh, R. Bacillus protein secretion: an unfolding story. Trends in Microbiology 16, 73-79, 2008.
    Hegyi, E., and Sahin-Toth, M. Trypsinogen isoforms in the ferret pancreas. Scientific Reports 8, 15094-15103, 2018.
    Henrissat, B., Driguez, H., Viet, C., and Schulein, M. Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Bio-Technology 3, 722-726, 1985.
    Hirata, R., and Anraku, Y. Mutations at the putative junction sites of the yeast VMA1 protein, the catalytic subunit of the vacuolar membrane H(+)-ATPase, inhibit its processing by protein splicing. Biochemical and Biophysical Research Communications 188, 40-47, 1992.
    Hoa, N. T., Brannigan, J. A., and Cutting, S. M. The Bacillus subtilis signaling protein SpoIVB defines a new family of serine peptidases. Journal of Bacteriology 184, 191-199, 2002.
    Jung, J., Sethi, A., Gaiotto, T., Han, J. J., Jeoh, T., Gnanakaran, S., and Goodwin, P. M. Binding and movement of individual Cel7A cellobiohydrolases on crystalline cellulose surfaces revealed by single-molecule fluorescence imaging. Journal of Biological Chemistry 288, 24164-24172, 2013.
    Ke, Q., Chen, A., Minoda, M., and Yoshida, H. Safety evaluation of a thermolysin enzyme produced from Geobacillus stearothermophilus. Food and Chemical Toxicology 59, 541-548, 2013.
    Kim, H., Kim, S. M. F., and Pack, M. Y. C-terminal processing of Bacillus subtilis Bse616 endo-β-1,4-glucanase in Bacillus megaterium. Biotechnology Letters 13, 799-804, 1991.
    Kinoshita, T. Glycosylphosphatidylinositol (GPI) Anchors: Biochemistry and Cell Biology: Introduction to a Thematic Review Series. Journal of Lipid Research 57, 4-5, 2016.
    Kinoshita, T. Biosynthesis and biology of mammalian GPI-anchored proteins. Open Biology 10, 190290, 2020.
    Kumar, D., and Murthy, G. S. Stochastic molecular model of enzymatic hydrolysis of cellulose for ethanol production. Biotechnology for Biofuels 6, 63-82, 2013.
    Larson, S. B., Day, J., de la Rosa, A. P. B., Keen, N. T., and McPherson, A. First crystallographic structure of a xylanase from glycoside hydrolase family 5: Implications for catalysis. Biochemistry 42, 8411-8422, 2003.
    Lee, H. L., Chang, C. K., Jeng, W. Y., Wang, A. H., and Liang, P. H. Mutations in the substrate entrance region of β-glucosidase from Trichoderma reesei improve enzyme activity and thermostability. Protein Engineering, Design and Selection 25, 733-740, 2012.
    Li, X., Zhang, Z., and Song, J. Computational enzyme design approaches with significant biological outcomes: progress and challenges. Computational and Structural Biotechnology Journal 2, e201209007, 2012.
    Light, A., and Janska, H. Enterokinase (enteropeptidase): comparative aspects. Trends in Biochemical Sciences 14, 110-112, 1989.
    Lo, A. C., Mackay, R. M., Seligy, V. L., and Willick, G. E. Bacillus subtilis β-1,4-endoglucanase products from intact and truncated genes are secreted into the extracellular medium by Escherichia coli. Applied and Environmental Microbiology 54, 2287-2292, 1988.
    Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M., and Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Research, 42, D490-495, 2014.
    Lutz, S. Beyond directed evolution-semi-rational protein engineering and design. Current Opinion in Biotechnology 21, 734-743, 2010.
    Lynd, L. R., Weimer, P. J., van Zyl, W. H., and Pretorius, I. S. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiology and Molecular Biology Reviews 66, 739-739, 2002
    Mahadevan, S. A., Wi, S. G., Lee, D. S., and Bae, H. J. Site-directed mutagenesis and CBM engineering of Cel5A (Thermotoga maritima). Federation of European Microbiological Societies Microbiology Letters 287, 205-211, 2008.
    Mandels, M., and Reese, E. T. Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. Journal of Bacteriology 73, 269-278, 1957.
    Marsden, W. L., Gray, P. P., Nippard, G. J., and Quinlan, M. R. Evaluation of the DNS method for analyzing lignocellulosic hydrolysates. Journal of Chemical Technology and Biotechnology 32, 1016-1022, 1982.
    Masran, R., Zanirun, Z., Bahrin, E. K., Ibrahim, M. F., Lai Yee, P., and Abd-Aziz, S. Harnessing the potential of ligninolytic enzymes for lignocellulosic biomass pretreatment. Applied Microbiology and Biotechnology 100, 5231-5246, 2016.
    Moller, S., Croning, M. D., and Apweiler, R. Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17, 646-653, 2001.
    Najar, I. N., Sherpa, M. T., Das, S., Verma, K., Dubey, V. K., and Thakur, N. Geobacillus yumthangensis sp. nov., a thermophilic bacterium isolated from a north-east Indian hot spring. International Journal of Systematic and Evolutionary Microbiology 68, 3430-3434, 2018.
    Nemoda, Z., and Sahin-Toth, M. The tetra-aspartate motif in the activation peptide of human cationic trypsinogen is essential for autoactivation control but not for enteropeptidase recognition. Journal of Biological Chemistry 280, 29645-29652, 2005.
    Ng, I. S., Li, C. W., Yeh, Y. F., Chen, P. T., Chir, J. L., Ma, C. H., Yu, S. M., Ho, T. H. D. and Tong, C. G. A novel endo-glucanase from the thermophilic bacterium Geobacillus sp 70PC53 with high activity and stability over a broad range of temperatures. Extremophiles 13, 425-435, 2009.
    Palmer, T., and Berks, B. C. The twin-arginine translocation (Tat) protein export pathway. Nature Reviews Microbiology 10, 483-496, 2012.
    Potprommanee, L., Wang, X. Q., Han, Y. J., Nyobe, D., Peng, Y. P., Huang, Q., Liu, J. Y., Liao, Y. L. and Chang, K. L. Characterization of a thermophilic cellulase from Geobacillus sp. HTA426, an efficient cellulase-producer on alkali pretreated of lignocellulosic biomass. PLoS One 12, e0175004, 2017.
    Raykhel, I., Alanen, H., Salo, K., Jurvansuu, J., Nguyen, V. D., Latva-Ranta, M., and Ruddock, L. A molecular specificity code for the three mammalian KDEL receptors. Journal of Cell Biology 179, 1193-1204, 2007.
    Santos, C. R., Paiva, J. H., Sforca, M. L., Neves, J. L., Navarro, R. Z., Cota, J., Akao, P. K., Hoffmam, Z. B., Meza, A. N., Smetana, J. H., Nogueira, M. L., Polikarpov, I., Xavier-Neto, J., Squina, F. M., Ward, R. J., Ruller, R., Zeri, A. C. and Murakami, M. T. Dissecting structure-function-stability relationships of a thermostable GH5-CBM3 cellulase from Bacillus subtilis 168. Biochemical Journal 441, 95-104, 2012.
    Sarvas, M., Harwood, C. R., Bron, S., and van Dijl, J. M. Post-translocational folding of secretory proteins in Gram-positive bacteria. Biochimica et Biophysica Acta Molecular Cell Research 1694, 311-327, 2004.
    Schirrmeister, J., Friedrich, L., Wenzel, M., Hoppe, M., Wolf, C., Gottfert, M., and Zehner, S. Characterization of the self-cleaving effector protein NopE1 of Bradyrhizobium japonicum. Journal of Bacteriology 193, 3733-3739, 2011.
    Schirrmeister, J., Zocher, S., Flor, L., Gottfert, M., and Zehner, S. The domain of unknown function DUF1521 exhibits metal ion-inducible autocleavage activity - a novel example from a putative effector protein of Vibrio coralliilyticus ATCC BAA-450. Federation of European Microbiological Societies Microbiology Letters 343, 177-182, 2013.
    Shah, N. H., and Muir, T. W. Inteins: Nature's gift to protein chemists. Chemical Science 5, 446-461, 2014.
    Sharma, H. K., Xu, C. B., and Qin, W. S. Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: An overview. Waste and Biomass Valorization 10, 235-251, 2019.
    Sidar, A., Albuquerque, E. D., Voshol, G. P., Ram, A. F. J., Vijgenboom, E., and Punt, P. J. Carbohydrate binding modules: diversity of domain architecture in amylases and cellulases from Filamentous Microorganisms. Frontiers in Bioengineering and Biotechnology 8, 871-885, 2020.
    Smith, B. J. SDS Polyacrylamide Gel Electrophoresis of Proteins. Methods in Molecular Biology 1, 41-55, 1984.
    Smith, M. A., Rentmeister, A., Snow, C. D., Wu, T., Farrow, M. F., Mingardon, F., and Arnold, F. H. A diverse set of family 48 bacterial glycoside hydrolase cellulases created by structure-guided recombination. The Federation of European Biochemical Societies Journal 279, 4453-4465, 2012.
    Steen, E. J., Kang, Y. S., Bokinsky, G., Hu, Z. H., Schirmer, A., McClure, A., del Cardayre, S. B. and Keasling, J. D. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463, 559-U182, 2010.
    Sulzenbacher, G., Shareck, F., Morosoli, R., Dupont, C., and Davies, G. J. The Streptomyces lividans family 12 endoglucanase: Construction of the catalytic core, expression, and X-ray structure at 1.75 angstrom resolution. Biochemistry 36, 16032-16039, 1997.
    Taylor, M. P., Eley, K. L., Martin, S., Tuffin, M. I., Burton, S. G., and Cowan, D. A. Thermophilic ethanologenesis: future prospects for second-generation bioethanol production. Trends in Biotechnology 27, 398-405, 2009.
    Tiwari, P., Misra, B. N., and Sangwan, N. S. β -Glucosidases from the fungus trichoderma: an efficient cellulase machinery in biotechnological applications. BioMed Research International 2013, 203735-203745, 2013.
    Tjalsma, H., Bolhuis, A., Jongbloed, J. D., Bron, S., and van Dijl, J. M. Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiology and Molecular Biology Reviews 64, 515-547, 2000
    Varnai, A., Siika-aho, M., and Viikari, L. Carbohydrate-binding modules (CBMs) revisited: reduced amount of water counterbalances the need for CBMs. Biotechnology for Biofuels 6, 30-41, 2013
    Vieille, C., and Zeikus, G. J. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiology and Molecular Biology Reviews 65, 1-43, 2001
    Viikari, L., Alapuranen, M., Puranen, T., Vehmaanpera, J., and Siika-Aho, M. Thermostable enzymes in lignocellulose hydrolysis. Biofuels 108, 121-145, 2007.
    Wang, Y. J., Yuan, H., Wang, J., and Yu, Z. L. Truncation of the cellulose binding domain improved thermal stability of endo-β-1,4-glucanase from Bacillus subtilis JA18. Bioresource Technology 100, 345-349, 2009.
    Wells-Bennik, M. H. J., Janssen, P. W. M., Klaus, V., Yang, C., Zwietering, M. H., and Den Besten, H. M. W. Heat resistance of spores of 18 strains of Geobacillus stearothermophilus and impact of culturing conditions. International Journal of Food Microbiology 291, 161-172, 2019.
    Wen, T. N., Chen, J. L., Lee, S. H., Yang, N. S., and Shyur, L. F. A truncated Fibrobacter succinogenes 1,3-1,4-β-d-glucanase with improved enzymatic activity and thermotolerance. Biochemistry 44, 9197-9205, 2005.
    Wenzel, M., Friedrich, L., Gottfert, M., and Zehner, S. The type III-secreted protein NopE1 affects symbiosis and exhibits a calcium-dependent autocleavage activity. Molecular Plant-Microbe Interactions 23, 124-129, 2010.
    Xiao, Z., Bergeron, H., Grosse, S., Beauchemin, M., Garron, M. L., Shaya, D., Sulea, T., Cygler, M. and Lau, P. C. Improvement of the thermostability and activity of a pectate lyase by single amino acid substitutions, using a strategy based on melting-temperature-guided sequence alignment. Applied and Environmental Microbiology 74, 1183-1189, 2008.
    Yang, M. J., Jung, S. H., Shin, E. S., Kim, J., Yun, H. D., Wong, S. L., and Kim, H. Expression of a Bacillus subtilis endoglucanase in protease-deficient Bacillus subtilis strains. Journal of Microbiology and Biotechnology 14, 430-434, 2004.
    Yeh, Y. F., Chang, S. C., Kuo, H. W., Tong, C. G., Yu, S. M., and Ho, T. H. A metagenomic approach for the identification and cloning of an endoglucanase from rice straw compost. Gene 519, 360-366, 2013
    Yennamalli, R. M., Rader, A. J., Kenny, A. J., Wolt, J. D., and Sen, T. Z. Endoglucanases: insights into thermostability for biofuel applications. Biotechnology for Biofuels 6, 136-144, 2013.
    Yeoman, C. J., Han, Y., Dodd, D., Schroeder, C. M., Mackie, R. I., and Cann, I. K. O. Thermostable enzymes as biocatalysts in the biofuel industry. Advances in Applied Microbiology 70, 1-55, 2010.
    Yoo, C. G., Yang, Y. I., Pu, Y. Q., Meng, X. Z., Muchero, W., Yee, K. L., Thompson, O. A., Rodriguez, M., Bali, G., Engle, N. L., Lindquist, E., Singan, V., Schmutz, J., DiFazio, S. P., Tschaplinski, T. J., Tuskan, G. A., Chen, J. G., Davison, B. and Ragauskas, A. J. Insights of biomass recalcitrance in natural Populus trichocarpa variants for biomass conversion. Green Chemistry 19, 5467-5478, 2017.
    Yoshida, S., Park, D. S., Bae, B., Mackie, R., Cann, I. K. O., and Nair, S. K. Structural and functional analyses of a glycoside hydrolase family 5 enzyme with an unexpected beta-fucosidase activity. Biochemistry 50, 3369-3375, 2011.
    Yu, H., Yan, Y., Zhang, C., and Dalby, P. A. Two strategies to engineer flexible loops for improved enzyme thermostability. Scientific Reports 7, 41212-41226, 2017.
    Yurtsever, Z., Sala-Rabanal, M., Randolph, D. T., Scheaffer, S. M., Roswit, W. T., Alevy, Y. G., Patel, A. C., Heier, R. F., Romero, A. G., Nichols, C. G., Holtzman, M. J. and Brett, T. J. Self-cleavage of human CLCA1 protein by a novel internal metalloprotease domain controls calcium-activated chloride channel activation. Journal of Biological Chemistry 287, 42138-42149, 2012.
    Zhao, M., Wu, F., and Xu, P. Development of a rapid high-efficiency scalable process for acetylated Sus scrofa cationic trypsin production from Escherichia coli inclusion bodies. Protein Expression and Purification 116, 120-126, 2015.
    Zheng, F., Tu, T., Wang, X., Wang, Y., Ma, R., Su, X., Xie, X., Yao, B. and Luo, H. Enhancing the catalytic activity of a novel GH5 cellulase GtCel5 from Gloeophyllum trabeum CBS 900.73 by site-directed mutagenesis on loop 6. Biotechnology for Biofuels 11, 76-88, 2018.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE