簡易檢索 / 詳目顯示

研究生: 林瑋晉
Lin, Wei-Jin
論文名稱: 噴水推進艦艇自推實驗技術建立與探討
Establishment and Discussion on Waterjet Vessel Self-Propulsion Experiment Technology
指導教授: 陳政宏
Chen, Jeng-Horng
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 153
中文關鍵詞: 噴水推進自推實驗阻力實驗拖航水槽
外文關鍵詞: Waterjet Propulsion, Self-Propulsion Test, Resistance Test, Towing Tank
相關次數: 點閱:136下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高速艦艇已成為現今船舶的發展趨勢,有關高速艦艇的船模實驗,過去受限於拖航水槽性能與台車速度影響,以致相關實驗技術受到限制,大多實驗需仰賴國外商業水槽進行相關研究,經由本研究有助於提升拖航水槽進行噴水推進高速艦艇船模實驗。本研究主要目標是噴水推進船模自推實驗技術建立以及統整相關理論,參照國際拖航水槽協會ITTC實驗指南與國內外各式文獻,會設定不同實驗條件,分別於同一船模安裝單噴水推進器與雙噴水推進器,探討2種不同噴水推進器佈置對於實驗技術建立的影響。首先會於迴流水槽進行測試,初步了解噴水推進與馬達的性能狀況,再經由阻力實驗獲得船模在不同實驗條件下的阻力變化與其他資訊,自推實驗依照2種不同實驗條件進行,經由實驗結果推估船模的自推點、量測出轉速(n)、推力(T)、轉矩(Q)、拖曳力(Fd)及航行姿態(sinkage & trim),再經由動量通量法可推估總推力(Tg)、淨推力(Tnet)、流量(QJ)、推減係數(t)、理想噴流效率(ηI)、傳遞功率(PD)與整體效率(ηOA)。次要目標探討在現有船模加工後進行實驗的可行性。本研究亦發現噴水推進船模在設計上會因幾何空間受限,影響儀器配置,特別是測量流速或壓力。

    High Speed Marine Vehicles(HSMV) have become the development trend now. In the past, the ship model experiments on high-speed vessels were limited by the performance of the towing tank and tow speed, most of the experiments relied on foreign towing tank, so that the experimental technology was limited. This research will help to upgrade towing tank ship model experiments for high-speed water jet propulsion test. The main objective of this research is to establish the self-propulsion experiment technology of the water jet propulsion test and integrate the theories. The experiment followed International Towing Tank Conference (ITTC) waterjet propulsion guidelines and some previous research. Under different experimental conditions, and installed single and double waterjet propulsors in the same model, studied the influence on the establishment of experimental technology. First, experiment was tested in the circulating tank to obtain a preliminary performance of the waterjet propulsor and motor performance, and then through the resistance test to obtain the resistance value and other information of the model ship in a towing tank. The self-propulsion experiment was carried out according to different waterjet propulsion arrangements. The results include rotational speed (n), thrust (T), torque (Q), and tow force (Fd) of the ship model and montion attitude (sinkage & trim), and estimated the self-propulsion point. Then, the momentum flux is used to method to obtain estimated gross thrust (Tg), net thrust (Tnet), flow rate (QJ), thrust deduction coefficient (t), ideal efficiency(ηI), deliver power(PD) and overall efficiency(ηOA). The secondary objective is to evaluate the feasibility on existing ship model processing. This study also found that we need to pay attention on geometric space arrangements, necessary due to the instrument configuration, especially the measurement of flow velocity or pressure.

    摘要 I Extend Abstract II 誌謝 X 目錄 XI 表目錄 XIV 圖目錄 XVI 縮寫表 XIII 符號表 XIV 第一章 緒論 1 1.1 前言 1 1.2 研究動機 1 1.3 研究目的 2 1.4 文獻回顧 2 1.4.1 噴水推進發展 2 1.4.2 國外文獻探討 3 1.4.2.1 ITTC噴水推進研究 3 1.4.2.2 水槽實驗 4 1.4.2.3 數值模擬 6 1.4.2.4 其他應用 9 1.4.3 國內文獻探討 9 1.5 論文架構 10 第二章 理論背景 12 2.1 噴水推進量測法、定義與控制方程式介紹 12 2.1.1 直接推力量測法 12 2.1.3 動量通量量測法 12 2.1.3 動量通量法定義 13 2.2 噴水推進效率特性 19 2.3 實驗物理量之取得 23 2.3.1 推力與流量量測 28 2.4 噴水推進單獨實驗 28 2.4.1 入流引水道間實驗 30 2.4.2 泵迴路實驗 31 2.4.3 噴水推進系統實驗 32 2.5 噴水推進性能預測 33 2.6 噴水推進實驗流程 33 2.7 噴水推進不確定性 35 第三章 研究方法 41 3.1 實驗規劃 41 3.2 實驗設備 42 3.2.1 迴流水槽 42 3.2.2 拖航水槽 43 3.2.3 3D列印機 43 3.3 噴水推進器介紹與選用 44 3.3.1噴水推進器介紹 44 3.3.2噴水推進器選用 45 3.3.3噴水推進器繪製 47 3.4 實驗船模 49 3.4.1 船模資訊 49 3.4.2 船模配置 52 3.4.3 船模改裝設計 53 3.4.4 船模加工 58 3.5 迴流水槽繫柱實驗測試 59 3.5.1 迴流水槽繫柱實驗原理 60 3.5.2 迴流水槽繫柱實驗儀器 61 3.5.3 迴流水槽繫柱實驗設計與配置 61 3.5.4 迴流水槽繫柱實驗流程 64 3.6 阻力實驗 67 3.6.1 阻力實驗原理 67 3.6.2 阻力實驗儀器 69 3.6.2 阻力實驗配置 70 3.6.3 阻力實驗流程 73 3.7 自推實驗 75 3.7.1 自推實驗原理 75 3.7.2 自推實驗儀器 78 3.7.3 自推實驗配置 81 3.7.4 自推實驗流程 87 第四章 研究結果與分析 90 4.1 迴流水槽繫柱實驗 90 4.1.1 力計校正數據 90 4.1.2 迴流水槽繫柱實驗數據 91 4.1.3 迴流水槽繫柱實驗計算數據 92 4.1.4 迴流水槽繫柱實驗不確定性 93 4.2 阻力實驗 94 4.2.1 比較船模加工前阻力實驗數據 94 4.2.2 船模加工後單噴與雙噴配置阻力實驗 96 4.2.3 阻力實驗不確定性 100 4.3 自推實驗 101 4.3.1 單噴自推實驗 101 4.3.2 雙噴自推實驗 107 4.3.3 拖航水槽繫柱實驗 117 4.3.4 動量通量計算數據 117 4.3.5 自推實驗不確定性 122 4.3.6 入流口流速實驗數據(吳尚恩, 2023) 123 4.3.7 壓力量測實驗 124 4.4 問題與討論 125 第五章 結論與未來展望 127 5.1 結論 127 5.2未來展望 129 參考文獻 131 附錄A 迴流水槽繫柱推力量測實驗 136 附錄A-1 500W與1000W馬達繫柱推力實驗數據 136 附錄A-2 迴流水槽繫柱流量實驗數據 137 附錄B 阻力實驗 138 附錄B-1 2013年阻力實驗數據 138 附錄B-2 2022年阻力實驗數據 (船模改裝前) 139 附錄B-3 單噴阻力實驗數據 141 附錄B-4 雙噴阻力實驗數據 143 附錄C 單噴自推實驗 145 附錄C-1 單噴自推實驗數據 145 附錄C-2 單噴自推計算數據 146 附錄D 雙噴自推實驗 148 附錄D-1 雙噴自推實驗數據 148 附錄D-2 雙噴自推計算數據 149 附錄E 拖航水槽繫柱實驗 152 附錄E-1 拖航水槽繫柱流量量測數據 152 附錄E-2 拖航水槽繫柱流量量測計算數據 152

    [1]Budiyanto, M. A., & Ayuningtyas, H. (2021). PERFORMANCE ANALYSIS OF WATERJET PROPULSION ON UNMANNED SURFACE VEHICLE MODELS. Journal of Applied Engineering Science, 19(4), 886-895.
    [2]Carlton, J. S. (2007). Marine Propellers and Propulsion. 2nd edition, published by Butterworth-Heinemann is an imprint of Elsevier, ISBN: 978-07506-8150-6
    [3]Dai, Y., Dong, X., Wang, J., Wang, J., & Liu, J. (2020). Numerical Simulation and Analysis of the Pressure Fluctuation of Four Waterjets in V-Type Ship. The 30th International Ocean and Polar Engineering Conference.
    [4] Eshed, S. (2018). Waterjet Modeling to Calculate High Speed Vessels’ Performance. Journal of Ship Production and Design, 34(03), 269-277. https://doi.org/10.5957/jspd.160050
    [5] Eslamdoost, A., Larsson, L., & Bensow, R. (2014). A pressure jump method for modeling waterjet/hull interaction. Ocean Engineering, 88, 120-130. https://doi.org/10.1016/j.oceaneng.2014.06.014
    [6] Eslamdoost, A., Larsson, L., & Bensow, R. (2014). Waterjet Propulsion and Thrust Deduction. Journal of Ship Research, 58(4), 201-215. https://doi.org/10.5957/josr.58.4.130057
    [7] Eslamdoost, A., Larsson, L., & Bensow, R. (2016). Net and Gross Thrust in Waterjet Propulsion. Journal of Ship Research, 60(2), 78-91. https://doi.org/10.5957/josr.60.2.150010
    [8] Eslamdoost, A., Larsson, L., & Bensow, R. (2018). Analysis of the thrust deduction in waterjet propulsion – The Froude number dependence. Ocean Engineering, 152, 100-112. https://doi.org/10.1016/j.oceaneng.2018.01.037
    [9] Eslamdoost, A., & Vikström, M. (2019). A body-force model for waterjet pump simulation. Applied Ocean Research, 90. https://doi.org/10.1016/j.apor.2019.05.017
    [10]Gany, A., & Gofer, A. (2014). Study of a Novel Air-augmented Waterjet Boost Concept. Journal of Ship Production and Design, 30(1), 1-6. https://doi.org/10.5957/jspd.30.1.120042
    [11]Gong, J., Guo, C.-y., Wang, C., Wu, T.-c., & Song, K.-w. (2019). Analysis of waterjet-hull interaction and its impact on the propulsion performance of a four-waterjet-propelled ship. Ocean Engineering, 180, 211-222. https://doi.org/10.1016/j.oceaneng.2019.04.002
    [12]Gong, J., Liu, J.-g., Dai, Y.-x., Guo, C.-y., & Wu, T.-c. (2021). Dynamics of stabilizer fins on the waterjet-propelled ship. Ocean Engineering, 222. https://doi.org/10.1016/j.oceaneng.2021.108595
    [13]Guo, J., Zhang, Y., Chen, Z., & Feng, Y. (2020). CFD-based multi-objective optimization of a waterjet-propelled trimaran. Ocean Engineering, 195. https://doi.org/10.1016/j.oceaneng.2019.106755
    [14]Hoshino, T., & Baba, E. (1984). Self-propulsion test of a semi-displacement craft model with a waterjet propulsor. Journal of the Society of Naval Architects of Japan, 1984(155), 50-57.
    [15]International Towing Tank Conference(1987). Report of the High-Speed Marine Vehcile Committee. 18th Conference Kobe, Japan, October 18-24 ,Retrieved 0522 from https://ittc.info/media/2566/report-of-the-high-speed-marine-vehicle-committee.pdf
    [16]International Towing Tank Conference (1993). Report of The Waterjets Session. 20th Conference San Francisco, California, September 19-25 ,Retrieved 0522 from https://ittc.info/media/2428/the-waterjets-session.pdf
    [17]International Towing Tank Conference (1996). Final Report and Recommendations to the 21st ITTC The Waterjets Group. 21st Conference, Trondheim, Norway, September 15~21, Retrieved 0522 from https://ittc.info/media/2482/report-of-the-waterjets-group.pdf
    [18]International Towing Tank Conference (1996). Waterjets Group. 21st Conference, Trondheim, Norway, September 15~21, Retrieved 0522 from https://ittc.info/media/2514/the-waterjets-group.pdf
    [19]International Towing Tank Conference (1999). Final Report and Recommendations to the 22nd ITTC The Specialist Committee on Validation of Waterjet Test Procedures. 22nd Conference, Seoul and Shanghai, Korea and China, Retrieved 0522 from https://ittc.info/media/1518/specialist-committee-on-waterjets.pdf
    [20]International Towing Tank Conference (2002). Final Report and Recommendations to the 23rd ITTC The Specialist Committee on Validation of Waterjet Test Procedures. 23rd Conference, Venice, Italy, Retrieved 0522 from https://ittc.info/media/1467/waterjet.pdf
    [21]International Towing Tank Conference (2005). Final Report and Recommendations to the 24th ITTC The Specialist Committee on Validation of Waterjet Test Procedures. 24th Conference Edinburgh, UK, Retrieved 0522 from https://ittc.info/media/5874/volume-ii-specialist-committee-on-vwtp.pdf
    [22]International Towing Tank Conference(2011). General Guideline for Waterjet Propulsive Performance Prediction - Propulsion Test and Extrapolation. Retrieved 0522 from https://ittc.info/media/9876/0_0.pdf
    [23]International Towing Tank Conference (2017). General Guideline for High Speed Marine Vehicles Resistance Test. Retrieved 0522 from https://ittc.info/media/9876/0_0.pdf
    [24]International Towing Tank Conference(2017). General Guideline for Uncertainty Analysis - Example for Waterjet Propulsion Test. Retrieved 0522 from https://ittc.info/media/9876/0_0.pdf
    [25]International Towing Tank Conference. (2017). General Guideline for Waterjet System Performance. Retrieved 0522 from https://ittc.info/media/9876/0_0.pdf
    [26]International Towing Tank Conference. (2021).General Guideline for Uncertainty Analysis in Resistance Tests. Retrieved 0522 from https://ittc.info/media/9876/0_0.pdf
    [27]Ji, G., Wang, L., Yin, X., & Liu, J. (2022). Research on Loss Mechanism of Water Jet Propulsion Inlet Duct. The 32nd International Ocean and Polar Engineering Conference, Shanghai, China, June 6-10.
    [28]Jiang, F., Li, Y., & Gong, J. (2021). Study on the manoeuvre characteristics of a trimaran under different layouts by water-jet self-propulsion model test. Applied Ocean Research, 108. https://doi.org/10.1016/j.apor.2021.102550
    [29]Kandasamy, M., Georgiev, S., Milanov, E., & Stern, F. (2011). Numerical and experimental evaluation of waterjet propelled delft catamarans. 11th International Conference on Fast Sea Transportation FAST, Honolulu, Hawaii, USA, September 26-29.
    [30]Kandasamy, M., Ooi, S. K., Carrica, P., & Stern, F. (2010). Integral force/moment waterjet model for CFD simulations. Journal of fluids engineering, 132(10).
    [31]Kim, D. J., & Kim, S. Y. (2017). Turning characteristics of waterjet propelled planing boat at semi-planing speeds. Ocean Engineering, 143, 24-33. https://doi.org/10.1016/j.oceaneng.2017.07.034
    [32]Kim, M.-C., & Chun, H.-H. (2007). Experimental Investigation into the performance of the Axial-Flow-Type Waterjet according to the Variation of Impeller Tip Clearance. Ocean Engineering, 34(2), 275-283. https://doi.org/10.1016/j.oceaneng.2005.12.011
    [33]Kim, M.-C., Chun, H.-H., Kim, H. Y., Park, W. K., & Jung, U. H. (2009). Comparison of waterjet performance in tracked vehicles by impeller diameter. Ocean Engineering, 36(17-18), 1438-1445.
    [34]Kim, M.-C., Park, W.-G., Chun, H.-H., & Jung, U.-H. (2010). Comparative study on the performance of Pod type waterjet by experiment and computation. International Journal of Naval Architecture and Ocean Engineering, 2(1), 1-13. https://doi.org/10.2478/ijnaoe-2013-0014
    [35]Lee, S.-J., Lee, T.-i., Lee, J.-J., Nam, W., & Suh, J.-C. (2017). Hydrodynamic Characteristics of a Hydrofoil-assisted Amphibious Vehicle. Journal of Ship Research, 61(1), 15-22. https://doi.org/10.5957/josr.61.1.160049
    [36]Lyu, N., & Ding, J. (2020). Numerical Research on Thrust Deduction of Submerged Waterjet Propelled Transport Vessels on Inland Rivers. The 30th International Ocean and Polar Engineering Conference, Shanghai, China, October 12-16.
    [37]Marine Jet Power(MJP). (2023). Mixed-flow vs. Axial-Flow and understanding the benefits and advantages of both. Retrieved 0522 from https://marinejetpower.com/faqs/mixed-flow-vs-axial-flow-and-understanding-the-benefits-and-advantages-of-both/
    [38]Marine Jet Power. (2023). ULTRAJET, Retrieved 0522 from https://marinejetpower.com/waterjets/ultrajet/
    [39]Marine Jet Power. (2023). Compact Steering Unit(CSU). Retrieved 0522 from https://marinejetpower.com/waterjets/csu/.
    [40]Seo, J., Jeong, H.-S., Rhee, S. H., & Chang, K. (2022). Towing Tank Model Tests for Propulsive Performance Analysis of a Waterjet-Propelled Amphibious Vehicle. Journal of Ship Research, 66(01), 91-107.
    [41]Sun, H., Guo, Z., Sun, Z., Tan, G., & Zhuang, J. (2017). Experimental Study of the Propulsion Performance of a Water-Jet Planing Monohull. The 27th International Ocean and Polar Engineering Conference, San Francisco, California, USA, June 25-30.
    [42]Wang, J., Liu, X., Yan, P., Zhang, Y., & Zhai, Z. (2021). Research of Experiment and Calculation on the Steering and Reversing Unit of Waterjet Propulsion. The 31st International Ocean and Polar Engineering Conference, Online , June 20-25.
    [43]Wilson, M. B., Hoyt, J. G., Scherer, J. O., Gorski, J. J., & Becnel, A. J. (2003). The gulf coast waterjet design and experimental evaluation project for a small navy ship. SNAME 10th Propeller and Shafting Symposium, Virginia Beach, Virginia, USA, September 17–18.
    [44]Zürcher, K., Bose, N., Binns, J., Thomas, G., & Davidson, G. (2013). Design and commissioning tests for waterjet self-propulsion testing of a medium-speed catamaran ferry using a single demihull. Proceedings of the Third International Symposium on Marine Propulsor, Launceston, Tasmania, May 5-8.
    [45]Zhang, Z., Chen, G., Gong, J., & Yang, C. (2022). Numerical Simulation and Experimental Verification of the Nozzle Flow of a Waterjet Model. The 32nd International Ocean and Polar Engineering Conference, Shanghai, China, June 6-10.
    [46]Zhang, Z., Zhou, M., Wang, L., & Liu, J. (2021). Numerical Calculation and Experimental Verification of Thrust of a Waterjet Monohull Model. The 31st International Ocean and Polar Engineering Conference, Online , June 20-25.
    [47]丁清輝(1998),噴水推進系統引水道流場之研究,國立臺灣大學造船及海洋工程學研究所碩士論文。
    [48]王立祥(2021)。噴水推進技術及工程設計,北京:國防工業出版社,ISBN:9787118121452。
    [49]張奕峰(2017)。船模阻力試驗阻塞效應之改善研究,國立成功大學系統及船舶機電工程學系碩士論文。
    [50]張宥棠(2014),拖航水槽效能提升-拖航臺車速度率定及震動改善,國立成功大學系統及船舶機電工程學系碩士論文。
    [51]祥貿科技企業有限公司, DFORCE V4 3D列印機,Retrieved 0521 from https://www.d-force.com.tw/d-force-v3。
    [52]陳建廷(2016),成大拖航水槽操作螺槳單獨性能試驗技術之確立與分析,國立成功大學系統及船舶機電工程學系碩士論文。
    [53]陳維揚.(2014),拖航水槽主要船模試驗項目之技術改善與比較分析,國立成功大學系統及船舶機電工程學系碩士論文。
    [54]楊昀叡(2020),船艦機庫幾何構型對直升機起降甲板風場結構之影響,國立成功大學系統及船舶機電工程學系碩士論文。
    [55]蔡進發(1999),水噴推進系統之研究,行政院國家科學委員會專題研究計畫成果報告,計畫編號:NSC 88-2611-E-002-013。
    [56]吳尚恩(2023),噴水推進器船模實驗之入流道流速測量技術研究,111學年度國科會大專生研究計畫研究成果報告書。
    [57]沈達萭 (2017),噴水推進器多重品質特性參數設計與流場數值模擬,國防大學理工學院造船及海洋工程碩士班碩士論文。
    [58]邱俊佐(2020),海用載具噴水推進系統之性能分析與參數設計研究,國防大學理工學院造船及海洋工程碩士班碩士論文。
    [59]涂建廷(2016),船艦噴水推進系統之實驗量測分析與參數設計研究,國防大學理工學院造船及海洋工程碩士班碩士論文。
    [60]陳昱恆(2019),輪型載具噴水推進系統之性能分析與參數設計研究,國防大學理工學院造船及海洋工程碩士班碩士論文。
    [61]林瑋晉(2023),高速噴水推進艦艇自推實驗技術之探討,第三十五屆中國造船暨輪機工程研討會暨國科會成果論文發表,國防大學理工學院動力及系統工程學系。

    無法下載圖示 校內:2028-08-28公開
    校外:2028-08-28公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE