簡易檢索 / 詳目顯示

研究生: 陳日興
Chen, Jih-Hsing
論文名稱: 高強度鋁合金冷鍛成形極限電腦輔助評估之研究
Investigation on Computer-aided Evaluation of Forming Limit in Cold Forging of High Strength Aluminum Alloy
指導教授: 李榮顯
Lee, Rong-Shean
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 86
中文關鍵詞: 鍛粗應變比值延性破壞準則有限元素法應變路徑破壞軌跡線成形極限圖冷鍛高強度鋁合金
外文關鍵詞: cold forging, strain ratio, upsetting, forming limit diagram, ductile fracture criterion, finite element method, strain path, high strength aluminum, fracture locus
相關次數: 點閱:179下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為探討引發鍛粗製程( upsetting )之自由表面破壞的原因,本文從五種不同的角度觀點來評估五種延性破壞準則之製程適用性,並選用其中製程適用性最佳之準則來做為自由表面破壞之判斷依據,此五種觀點包括等效應力、最大拉張應力、最大拉張應力之正規化 ( normalize )、微觀空孔成長角度以及靜液壓應力等五種觀點。
    文中吾人引用可成形性實驗所量測到的應變量,以適用性分析之方法,評估出最適合鍛粗製程的延性破壞準則後,再結合有限元素套裝軟體DEFORM-3D,針對高強度鋁合金Al-2017F進行圓柱壓縮模擬分析,預測Al-2017F在不同潤滑條件與胚料高度直徑比的成形極限。
    本文成功的評估出Cockcroft and Latham延性破壞準則最適用於鍛粗製程之破壞預測,並利用該準則預測出Al-2017F在不同潤滑情況及胚料高度直徑比的成形極限。由模擬的結果顯示,摩擦係數與胚料高度直徑比並不會改變材料的破壞軌跡線,而實驗中途摩擦係數的變異,會導致應變路徑的改變,進而影響胚料的可成形性。透過本文的研究,未來僅需依製程特性選用適當的延性破壞準則,再透過有限元素法的模擬分析,最後只需做少數的實驗驗證,便可快速建立出材料完整的成形極限圖 ( FLD ),以提供製程或設計等相關人員在開發新產品或參數最佳化時,判斷胚料何時、何處破壞的依據。

    To investigate the fracture on the free surface in upsetting process, five different ductile fracture criteria are evaluated in this research. The evaluated criteria include equivalent stress, maximum tensile stress, normalized maximum tensile stress, void growth and coalescence, and hydrostatic stress. After the most adoptable fracture criterion being obtained, we can identify the billet fractured or not by this criterion.
    In this research, we used the limit strain data measured in the literature to evaluate the most adoptable fracture criterion. After the most adoptable fracture criterion being obtained, it is then used to create simulation model by the DEFORM-3D software to predict the forming limits under different process conditions. The simulation of cylinder compression for the Al-2017F alloy was performed in different friction conditions and height/diameter ratios.
    The evaluated results show that the Cockcroft and Latham ductile fracture criterion is the most suitable for the fracture prediction in upsetting process. From the simulated results, friction coefficient and the height/diameter ratio will not change the fracture locus. The suddenly change of friction coefficient during experiments will affect the strain path, thus affecting the formability of the billet. With the proposed method, the construction of the forming limit diagram (FLD) can be simplified by selecting proper ductile fracture criteria during finite element simulation and comparing the simulated result with a few experimental results. Thus, the identification of fracture during process parameter optimization can be made.

    中文摘要........................................I 英文摘要........................................II 總目錄..........................................III 圖目錄..........................................VII 表目錄..........................................X 符號說明........................................XII 第一章 前言....................................1 1-1 緒論.......................................1 1-2 文獻回顧...................................3 1-3 本文研究範疇...............................12 第二章 金屬成形極限理論........................15 2-1 金屬成形概論...............................15 2-2 可鍛造性概論...............................16 2-3 整體成形之缺陷.............................17 2-4 延性破壞機制...............................18 2-5 成形極限圖概述.............................19 2-6 延性破壞準則之比較探討.....................23 第三章 電腦模擬分析............................27 3-1 有限元素法於塑性加工上之應用...............27 3-2 塑性成形之FEM力學模式分析..................28 3-3 DEFORM軟體簡介.............................32 第四章 實驗與模擬條件規劃......................35 4-1 實驗之條件規劃.............................35 4-1-1 圓環壓縮試驗之條件規劃...................35 4-1-2 圓柱壓縮試驗之條件規劃...................36 4-2 實驗之結果.................................38 4-2-1 各潤滑條件下的摩擦因子...................39 4-2-2 Al-2017F之塑流應力—應變圖...............39 4-2-3 各實驗規劃條件下的延性破壞點與應變路徑...40 4-3 圓柱壓縮有限元素模擬條件規劃...............41 4-3-1 CAD模型之建立............................41 4-3-2 參數之設定...............................44 4-4 網格佈建與點資料擷取.......................44 4-4-1 網格局部細化.............................44 4-4-2 點追蹤之位置.............................46 4-5 收斂性分析.................................47 4-6 模擬之假設模式.............................48 第五章 結果與討論..............................50 5-1 五種延性破壞準則之臨界破壞值與製程適用性分析...............................................50 5-1-1 五種延性破壞準則之臨界破壞值.............50 5-1-2 五種延性破壞準則之製程適用性分析.........54 5-1-3 製程特性對於延性破壞準則製程適用性之影響.57 5-2 應變路徑之探討.............................59 5-2-1 實驗與模擬應變路徑之比較.................59 5-2-2 摩擦係數對應變路徑之影響.................66 5-3 成形極限圖之探討...........................70 5-4 壓縮比與破壞應變之探討.....................71 5-4-1 壓縮比之探討.............................71 5-4-2 破壞應變之探討...........................73 第六章 結論與建議..............................76 6-1 本文結論...................................76 6-2 未來建議...................................77 附錄A 各應力、應變轉換成環向應變與軸向應變 關係式之計算式.................................79 附錄B 各延性破壞準則轉換成環向應變與軸向應變 關係式之計算式.................................81 參考文獻.......................................84

    1.Altan, T. and C. H. Lee,“Influence of Flow Stress and Friction upon Metal Flow
    in Upsetting Forging of Rings and Cylinders”, J. Eng. Ind., Trans. ASME,
    pp.775, 1972
    2.Atkins, A. G.,“Possible explanation for unexpected departures in hydrostatic
    tension-fracture strain relation”, Metal Science, pp.81-83, 1981
    3.Atkins, A. G.,“Fracture In Forming”, Journal of Materials Processing
    Technology, vol. 56, pp.609-618, 1996
    4.Bridgman, P. W.,“Studies in Large Plastic Flow and Fracture”, McGraw-Hill, New
    York, 1952
    5.Brozzo, P., B. Deluca and R. Rendina,“A new method for the prediction of
    formability limits in metal sheets, sheet metal forming and formability”,
    Proceeding of the Seventh Biennial Conference of the International Deep Drawing
    Research Group, 1972
    6.Chen, H. L., T. F. Lehnhoff and S. M. Doraivelu,“A Stress Ratio Parameter for
    Studying the Workability of Metals-Extrusion”, J. Materials Shaping Technology,
    vol. 8, pp.209-218, 1990
    7.Chiou, J. M., “A Study of Ductile Damage in Metal Forming”, A thesis submitted
    in supplication for degree of Ph.D., 1996
    8.Clift, S. E., P. Hartley, C. E. N. Sturgess and G. W. Rowe,“Fracture Prediction
    in Plastic Deformation Processes”, Int. J. Mech. Sci., vol. 32, pp.1-17, 1990
    9.Cockcroft, M.G. and D.J. Latham,“Ductility and workability of metals”, J.
    Inst. Metals, pp.33-39, 1966
    10.DEFORM System User Manual, Scientific Forming Technologies Corporation, Apr. 1,
    1995
    11.Dieter, G. E.,“Mechanical Metallurgy”, McGraw-Hill, New York, pp.554-557,
    1986
    12.Dodd, B. and Y.L. Bai,“Ductile Fracture and Ductility with Applications to
    Metalworking”, Academic Press, 1987
    13.Frater, J. L. and B. R. Penza,“Predicting Fracture in Cold Upset Forging by
    Finite Element Methods”, J. Materials Shaping Technology, vol. 7, pp.57-62,
    1989
    14.Freudenthal, A.M.,“The Inelastic Behaviour of Engineering Materials and
    Structure”, John Wiley, 1950
    15.Gouveia, B. P. P. A., J. M. Rodrigues and P. A. F. Martins,“Fracture
    Predicting In Bulk Metal Forming”, Int. J. Mech. Sci., vol. 38, pp.361-372,
    1996
    16.Gouveia, B. P. P. A., J. M. C. Rodrigues, P. A. F. Martins,“Ductile fracture
    in metalworking: experimental and theoretical research”, Journal of Materials
    Processing Technology, vol. 101, pp.52-63, 2000
    17.Jain, S.C. and S. Kobayashi,“Deformation and fracture of an aluminum alloy in
    plain-strain side-pressing”, In Proc. 11th Int. MTDR Conf., pp.1137-1154, 1970
    18.Ko, D. C., Byung-Min Kim and Jae-Chan Choi,“Prediction of surface-fracture
    initiation in the axisymmetric extrusion and simple upsetting of an aluminum
    alloy”, Journal of Materials Processing Technology, vol. 62, pp.166-174, 1996
    19.Kobayashi, S., “Deformation Characteristics and Ductile Fracture of 1040 Steel
    in Simple Upsetting of Solid Cylinders and Rings”, Trans. ASME, Ser. B, vol.
    92, 1970
    20.Kobayashi, S., S. I. Oh and T. Altan, “Metal forming and the finite-element
    method”, Oxford University Press, New York, 1998
    21.Kudo, H. and K. Aoi,“Effect of Compression Test Condition upon Fracture of a
    Medium Carbon Steel”, J. Japan Soc. Tech. Plasticity, vol. 8, pp.17-27, 1967
    22.Kuhn, H. A., P. W. Lee and T. Erturk,“A Fracture Criterion for Cold Forming”,
    J. of Engineering Materials and Technology, pp.213-218, 1973
    23.Landre, J., A. Pertence, P. R. Cetlin, J. M. C. Rodrigues and P. A. F.
    Martins,“On the utilization of ductile fracture criteria in cold forging”,
    Finite Element in Analysis and Design, vol. 39, pp.175-186, 2003
    24.Lee, P. W. and H. A. Kuhn,“Fracture in Cold Upset Forging — A Criterion and
    Model”, Metall. Trans, vol. 4, pp.969-974, 1973
    25.McClintock, F.A.,“A criterion for ductile fracture by the growth of holes”,
    Trans. ASME J. Applied Mech., pp.363-371, 1968
    26.Oyane, M., T. Sato, K. Okimoto and S. Shima,“Criteria For Ductile Fracture and
    Their Application”, Journal of Mechanical Working Technology, pp.65-81, 1980
    27.Reddy, J. N., “An Introduction to The Finite Element Method”, McGraw-Hill,
    New York, pp.421-429, 1993
    28.Roberts, S. M., J. Kusiak, Y. L. Liu, A. Forcellese and P. J.
    Withers,“Prediction of damage evolution in forged aluminium metal matrix
    composites using a neural network approach”, Journal of Materials Processing
    Technology, pp.507-512, 1998
    29.Rowe, G. W.,“Principles of Industrial Metalworking Processes”, Edward Arnold
    (Publishers) Ltd., London, 1977
    30.Shan, J. J. and H. A. Kuhn,“An Empirical Formula For Workability Limits In
    Cold Upsetting And Bolt Heading”, J. Applied Metal Working, vol. 4,
    pp.255-261, 1986
    31.Sowerby, R. and N. Chandrasekaran,“The Cold Upsetting and Free Surface
    Ductility of Some Commercial Steels”, American Society For Metals, vol. 3,
    pp.257-263, 1984
    32.Taupin, E., J. Breitling, W. T. Wu and T. Altan,“Material fracture and burr
    formation in blanking results of FEM simulations and comparison with
    experiments”, Journal of Materials Processing Technology, vol. 59, pp.68-78,
    1996
    33.Thomason, P. F.,“Tensile Plastic Instability and Ductile Fracture Criteria in
    Uniaxial Compression Tests”, Int. J. Mech. Sci., vol. 11, pp.187-198, 1969
    34.Wifi, A. S., A. Abdel-Hamid, H. El-Monayri and N. El-Abbasi,“Finite Element
    Determination of Workability Limits For Disks and Rings under Different
    Upsetting Conditions”, Journal of Materials Processing Technology, vol. 56,
    pp.918-932, 1996
    35.Wifi, A. S., A. Abdel-Hamid and N. El-Abbasi,“Computer-aided evaluation of
    workability in bulk forming processes”, Journal of Materials Processing
    Technology, vol.77, pp.285-293, 1998
    36.王水鐸,“高強度鋁合金鍛造成形極限之探討”, 國立成功大學碩士論文, 1986
    37.方世榮, “基礎統計學” , 華泰文化事業公司, pp. 41-83, 1999
    38.李榮顯,“塑性加工學”, 三民書局, pp.50-70, 1986
    39.許源泉,“鍛造學”, 三民書局, pp. 17-20, 1993
    40.楊榮顯,“工程材料學”, 全華科技圖書股份有限公司, pp.367-402, 1997

    下載圖示 校內:2005-07-24公開
    校外:2005-07-24公開
    QR CODE