| 研究生: |
陳日興 Chen, Jih-Hsing |
|---|---|
| 論文名稱: |
高強度鋁合金冷鍛成形極限電腦輔助評估之研究 Investigation on Computer-aided Evaluation of Forming Limit in Cold Forging of High Strength Aluminum Alloy |
| 指導教授: |
李榮顯
Lee, Rong-Shean |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 鍛粗 、應變比值 、延性破壞準則 、有限元素法 、應變路徑 、破壞軌跡線 、成形極限圖 、冷鍛 、高強度鋁合金 |
| 外文關鍵詞: | cold forging, strain ratio, upsetting, forming limit diagram, ductile fracture criterion, finite element method, strain path, high strength aluminum, fracture locus |
| 相關次數: | 點閱:179 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為探討引發鍛粗製程( upsetting )之自由表面破壞的原因,本文從五種不同的角度觀點來評估五種延性破壞準則之製程適用性,並選用其中製程適用性最佳之準則來做為自由表面破壞之判斷依據,此五種觀點包括等效應力、最大拉張應力、最大拉張應力之正規化 ( normalize )、微觀空孔成長角度以及靜液壓應力等五種觀點。
文中吾人引用可成形性實驗所量測到的應變量,以適用性分析之方法,評估出最適合鍛粗製程的延性破壞準則後,再結合有限元素套裝軟體DEFORM-3D,針對高強度鋁合金Al-2017F進行圓柱壓縮模擬分析,預測Al-2017F在不同潤滑條件與胚料高度直徑比的成形極限。
本文成功的評估出Cockcroft and Latham延性破壞準則最適用於鍛粗製程之破壞預測,並利用該準則預測出Al-2017F在不同潤滑情況及胚料高度直徑比的成形極限。由模擬的結果顯示,摩擦係數與胚料高度直徑比並不會改變材料的破壞軌跡線,而實驗中途摩擦係數的變異,會導致應變路徑的改變,進而影響胚料的可成形性。透過本文的研究,未來僅需依製程特性選用適當的延性破壞準則,再透過有限元素法的模擬分析,最後只需做少數的實驗驗證,便可快速建立出材料完整的成形極限圖 ( FLD ),以提供製程或設計等相關人員在開發新產品或參數最佳化時,判斷胚料何時、何處破壞的依據。
To investigate the fracture on the free surface in upsetting process, five different ductile fracture criteria are evaluated in this research. The evaluated criteria include equivalent stress, maximum tensile stress, normalized maximum tensile stress, void growth and coalescence, and hydrostatic stress. After the most adoptable fracture criterion being obtained, we can identify the billet fractured or not by this criterion.
In this research, we used the limit strain data measured in the literature to evaluate the most adoptable fracture criterion. After the most adoptable fracture criterion being obtained, it is then used to create simulation model by the DEFORM-3D software to predict the forming limits under different process conditions. The simulation of cylinder compression for the Al-2017F alloy was performed in different friction conditions and height/diameter ratios.
The evaluated results show that the Cockcroft and Latham ductile fracture criterion is the most suitable for the fracture prediction in upsetting process. From the simulated results, friction coefficient and the height/diameter ratio will not change the fracture locus. The suddenly change of friction coefficient during experiments will affect the strain path, thus affecting the formability of the billet. With the proposed method, the construction of the forming limit diagram (FLD) can be simplified by selecting proper ductile fracture criteria during finite element simulation and comparing the simulated result with a few experimental results. Thus, the identification of fracture during process parameter optimization can be made.
1.Altan, T. and C. H. Lee,“Influence of Flow Stress and Friction upon Metal Flow
in Upsetting Forging of Rings and Cylinders”, J. Eng. Ind., Trans. ASME,
pp.775, 1972
2.Atkins, A. G.,“Possible explanation for unexpected departures in hydrostatic
tension-fracture strain relation”, Metal Science, pp.81-83, 1981
3.Atkins, A. G.,“Fracture In Forming”, Journal of Materials Processing
Technology, vol. 56, pp.609-618, 1996
4.Bridgman, P. W.,“Studies in Large Plastic Flow and Fracture”, McGraw-Hill, New
York, 1952
5.Brozzo, P., B. Deluca and R. Rendina,“A new method for the prediction of
formability limits in metal sheets, sheet metal forming and formability”,
Proceeding of the Seventh Biennial Conference of the International Deep Drawing
Research Group, 1972
6.Chen, H. L., T. F. Lehnhoff and S. M. Doraivelu,“A Stress Ratio Parameter for
Studying the Workability of Metals-Extrusion”, J. Materials Shaping Technology,
vol. 8, pp.209-218, 1990
7.Chiou, J. M., “A Study of Ductile Damage in Metal Forming”, A thesis submitted
in supplication for degree of Ph.D., 1996
8.Clift, S. E., P. Hartley, C. E. N. Sturgess and G. W. Rowe,“Fracture Prediction
in Plastic Deformation Processes”, Int. J. Mech. Sci., vol. 32, pp.1-17, 1990
9.Cockcroft, M.G. and D.J. Latham,“Ductility and workability of metals”, J.
Inst. Metals, pp.33-39, 1966
10.DEFORM System User Manual, Scientific Forming Technologies Corporation, Apr. 1,
1995
11.Dieter, G. E.,“Mechanical Metallurgy”, McGraw-Hill, New York, pp.554-557,
1986
12.Dodd, B. and Y.L. Bai,“Ductile Fracture and Ductility with Applications to
Metalworking”, Academic Press, 1987
13.Frater, J. L. and B. R. Penza,“Predicting Fracture in Cold Upset Forging by
Finite Element Methods”, J. Materials Shaping Technology, vol. 7, pp.57-62,
1989
14.Freudenthal, A.M.,“The Inelastic Behaviour of Engineering Materials and
Structure”, John Wiley, 1950
15.Gouveia, B. P. P. A., J. M. Rodrigues and P. A. F. Martins,“Fracture
Predicting In Bulk Metal Forming”, Int. J. Mech. Sci., vol. 38, pp.361-372,
1996
16.Gouveia, B. P. P. A., J. M. C. Rodrigues, P. A. F. Martins,“Ductile fracture
in metalworking: experimental and theoretical research”, Journal of Materials
Processing Technology, vol. 101, pp.52-63, 2000
17.Jain, S.C. and S. Kobayashi,“Deformation and fracture of an aluminum alloy in
plain-strain side-pressing”, In Proc. 11th Int. MTDR Conf., pp.1137-1154, 1970
18.Ko, D. C., Byung-Min Kim and Jae-Chan Choi,“Prediction of surface-fracture
initiation in the axisymmetric extrusion and simple upsetting of an aluminum
alloy”, Journal of Materials Processing Technology, vol. 62, pp.166-174, 1996
19.Kobayashi, S., “Deformation Characteristics and Ductile Fracture of 1040 Steel
in Simple Upsetting of Solid Cylinders and Rings”, Trans. ASME, Ser. B, vol.
92, 1970
20.Kobayashi, S., S. I. Oh and T. Altan, “Metal forming and the finite-element
method”, Oxford University Press, New York, 1998
21.Kudo, H. and K. Aoi,“Effect of Compression Test Condition upon Fracture of a
Medium Carbon Steel”, J. Japan Soc. Tech. Plasticity, vol. 8, pp.17-27, 1967
22.Kuhn, H. A., P. W. Lee and T. Erturk,“A Fracture Criterion for Cold Forming”,
J. of Engineering Materials and Technology, pp.213-218, 1973
23.Landre, J., A. Pertence, P. R. Cetlin, J. M. C. Rodrigues and P. A. F.
Martins,“On the utilization of ductile fracture criteria in cold forging”,
Finite Element in Analysis and Design, vol. 39, pp.175-186, 2003
24.Lee, P. W. and H. A. Kuhn,“Fracture in Cold Upset Forging — A Criterion and
Model”, Metall. Trans, vol. 4, pp.969-974, 1973
25.McClintock, F.A.,“A criterion for ductile fracture by the growth of holes”,
Trans. ASME J. Applied Mech., pp.363-371, 1968
26.Oyane, M., T. Sato, K. Okimoto and S. Shima,“Criteria For Ductile Fracture and
Their Application”, Journal of Mechanical Working Technology, pp.65-81, 1980
27.Reddy, J. N., “An Introduction to The Finite Element Method”, McGraw-Hill,
New York, pp.421-429, 1993
28.Roberts, S. M., J. Kusiak, Y. L. Liu, A. Forcellese and P. J.
Withers,“Prediction of damage evolution in forged aluminium metal matrix
composites using a neural network approach”, Journal of Materials Processing
Technology, pp.507-512, 1998
29.Rowe, G. W.,“Principles of Industrial Metalworking Processes”, Edward Arnold
(Publishers) Ltd., London, 1977
30.Shan, J. J. and H. A. Kuhn,“An Empirical Formula For Workability Limits In
Cold Upsetting And Bolt Heading”, J. Applied Metal Working, vol. 4,
pp.255-261, 1986
31.Sowerby, R. and N. Chandrasekaran,“The Cold Upsetting and Free Surface
Ductility of Some Commercial Steels”, American Society For Metals, vol. 3,
pp.257-263, 1984
32.Taupin, E., J. Breitling, W. T. Wu and T. Altan,“Material fracture and burr
formation in blanking results of FEM simulations and comparison with
experiments”, Journal of Materials Processing Technology, vol. 59, pp.68-78,
1996
33.Thomason, P. F.,“Tensile Plastic Instability and Ductile Fracture Criteria in
Uniaxial Compression Tests”, Int. J. Mech. Sci., vol. 11, pp.187-198, 1969
34.Wifi, A. S., A. Abdel-Hamid, H. El-Monayri and N. El-Abbasi,“Finite Element
Determination of Workability Limits For Disks and Rings under Different
Upsetting Conditions”, Journal of Materials Processing Technology, vol. 56,
pp.918-932, 1996
35.Wifi, A. S., A. Abdel-Hamid and N. El-Abbasi,“Computer-aided evaluation of
workability in bulk forming processes”, Journal of Materials Processing
Technology, vol.77, pp.285-293, 1998
36.王水鐸,“高強度鋁合金鍛造成形極限之探討”, 國立成功大學碩士論文, 1986
37.方世榮, “基礎統計學” , 華泰文化事業公司, pp. 41-83, 1999
38.李榮顯,“塑性加工學”, 三民書局, pp.50-70, 1986
39.許源泉,“鍛造學”, 三民書局, pp. 17-20, 1993
40.楊榮顯,“工程材料學”, 全華科技圖書股份有限公司, pp.367-402, 1997