簡易檢索 / 詳目顯示

研究生: 林挺郁
Lin, Ting-Yu
論文名稱: 有機發光元件電機傳輸及電激發光特性模式建立之研究
Modeling of Electrical Transport and Electroluminescence in Organic Light-Emitting Diode
指導教授: 方炎坤
Fang, Yean-Kuen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 83
中文關鍵詞: 有機發光元件模擬
外文關鍵詞: Modeling, OLED
相關次數: 點閱:81下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係討論在有機層添加氮與否對雙層結構有機發光元件的影響。我們同時使用實驗與模擬的方法來探討OLED的電機傳輸及電激發光現象。我們發現添加氮分子於電子傳輸層中可以將啟動電壓及操作電壓分別降到0.8及4.2伏特。然而,添加氮分子於電洞傳輸層中卻可有效的將元件的發光效率提高至27 cd/A(約原來的八倍大)。又由掃瞄式電子顯微鏡(SEM)來分析放在空氣中48小時後的元件有機層表面,結果顯示摻雜在有機層中的氮分子可以藉著防止水氣和有機材料的化學反應大大地抑制了會造成暗點現象的結晶化圓柱,進而對元件的可靠性及壽命的增進有相當的助益。

    此外,將模擬結果與實驗數據相互比較,發現兩者相當的符合,因此驗證了此模式的正確性。又以此模式之建立,使得對有機材料中傳輸的物理意義的了解更加廣泛,將有助於往後設計更有效率的有機發光元件。

    In this thesis, The effect of bi-layer organic light-emitting diodes(OLED),with and without nitrogen incorporation have been studied in detail. Both experiment and simulation have been employed to investigate the electrical transport and electroluminescence of the OLED. We found turn-on and operating voltages are successfully reduced to 0.8V and 4.2V, respectively, with the nitrogen-incorporation into Alq3 (ETL). The same process used to TPD layer (HTL) can strongly promote the electro-luminance efficiency to 27 cd/A, which is about 8 times to the value of OLED without the treatment due to the generation of hole block effect. Additionally, the N2 molecules incorporated into organic layers can avoid the reaction of moisture and organic materials thus suppressing the occurrence of destructive crystalline clusters, which will lead to the phenomenon of dark spots.

    Furthermore, the simulation is compared to the experimental results . Very good fitting is found, thus evidencing the availability of the modeling. Based on the modeling, the physics underpinning transport in these organic materials are realized more comprehensively and enable the advanced design of a LED with the organic material.

    Abstract (in Chinese)…………………………………………I Abstract (in English)…………………………………………Ⅱ Content……………………………………………………………Ⅲ Figure and Table Captions……………………………………Ⅵ Chapter 1 Introduction………………………………………1 Chapter 2 Principle of OLED………………………………6 2-1 The Mechanism of OLED…………………………………6 2-1-1 Electrical characteristics of OLED…………………6 2-1-2 Electroluminescence of OLED…………………………8 2-2 Various Structures of OLED………………………………9 2-3 Factors of Effects on Performance of OLED…………11 2-4 Efficiency Calculation…………………………………12 Chapter 3 Experimental Procedures and Systems………14 3-1 Experimental Preparation………………………………14 3-1-1 Substrate Cleaning……………………………………14 3-1-2 Substrate etching process……………………………15 3-2 Growth system and procedures……………………………15 3-2-1 Deposition System………………………………………15 3-2-2 Materials…………………………………………………16 3-2-3 Deposition of thin films………………………………17 3-3 Encapsulation procedure……………………………………18 3-3-1 RF magnetron sputtering system…………………………18 3-3-2 Encapsulation procedure…………………………………18 3-4 Measurements……………………………………………………19 3-4-1 Electrical Characteristic………………………………19 3-4-2 Optical Characteristics…………………………………20 3-4-3 Surface Morphology…………………………………………21 Chapter 4 Modeling and Simulation……………………………22 4-1 The I-V Model……………………………………………………22 4-1-1 Equations defining the model………………………………22 4-2 The EL Model………………………………………………………27 4-2-1 Equations defining the model…………………………………28 4-3 Result and Discussion……………………………………………30 4-3-1 Electron Transport Layer (Alq3) with nitrogen incorporation………………………………………………………30 4-3-2 Hole Transport Layer (TPD) with nitrogen incorporation………………………………………………………34 4-3-3 Nitrogen Incorporation in both ETL and HTL………………36 4-4 Summary…………………………………………………………………37 Chapter 5 Conclusion and Prospect……………………………………39 Figure Captions Chapter 2 Fig. 2-1 The OLED structure Fig. 2-2 The energy level diagram of bi-layer OLED Fig. 2-3 Schematic representation of pathways for singlet decay as well as triplet excitation and decay Fig. 2-4 Various structures of OLED Chapter 3 Fig. 3-1 The thermal vacuum evaporation system Fig. 3-2 (a) The molecular structure of TPD (b) The molecular structure of Alq3 Fig. 3-3 The top view of encapsulation structure Fig. 3-4 The RF magnetron sputtering system Fig. 3-5 The photoluminescence apparatus Fig. 3-6 The electroluminescence apparatus Chapter 4 Fig. 4-1 The bi-layer OLED structure Fig .4-2 Schematic diagram showing the relaxation of trapped electrons in Alq3 with a minority hole Fig. 4-3 Simulation and measured I-V curves for OLED with Alq3 incorporated by nitrogen at various pressures Fig. 4-4 The elemental composition of Alq3 with nitrogen- incorporation measured by AES Fig. 4-5 The elemental composition of Alq3 without nitrogen incorporation measured by AES Fig. 4-6 Electrons transport in the OLED with nitrogen-incorporation Fig. 4-7 Simulation and measured L-V curves for OLED with Alq3 incorporated by nitrogen at various pressures Fig. 4-8 The L-I characteristics of OLED with nitrogen-incorporation to Alq3 Fig. 4-9 Current efficiency-Current density characteristics of OLED with nitrogen-incorporation to Alq3 Fig. 4-10 Power efficiency-Current density characteristics of OLED with nitrogen-incorporation to Alq3 Fig. 4-11 The SEM of Alq3 surface Fig. 4-12 The PL spectrum of Alq3 (ETL, EML) Fig. 4-13 (a) The EL spectra of OLED without nitrogen treatment (b) The EL spectra of OLED with nitrogen- incorporation to Alq3 Fig. 4-14 Simulation and measured I-V curves for OLED with TPD incorporated by nitrogen at various pressures Fig. 4-15 The mechanism of hole conduction in HTL(TPD) Fig. 4-16 Simulation and measured L-V curves for OLED with TPD incorporated by nitrogen at various pressures Fig. 4-17 The L-I characteristics of OLED with nitrogen-incorporation to TPD Fig. 4-18 The Current efficiency-I characteristics of OLED with nitrogen-incorporation to TPD Fig. 4-19 The Power efficiency-I characteristics of OLED with nitrogen-incorporation to TPD Fig. 4-20 The SEM of TPD surface Fig. 4-21 Simulation and measured I-V curves for OLED with nitrogen-incorporation to both Alq3 and TPD Fig. 4-22 Simulation and measured L-V curves for OLED with nitrogen -incorporation to both Alq3 and TPD Fig. 4-23 The L-I characteristics of OLED with nitrogen -incorporation to both Alq3 and TPD Fig. 4-24 The diagram of carriers transport in OLED treated Fig. 4-25 The Current efficiency versus Current density characteristics of OLED with nitrogen- incorporation to both Alq3 and TPD Fig. 4-26 The Power efficiency versus Current density characteristics of OLED with nitrogen - incorporation to both Alq3 and TPD Fig. 4-27 The comparison between I-V characteristics of OLED with nitrogen-incorporation to different organic layer Fig. 4-28 The comparison between L-V characteristics of OLED with nitrogen-incorporation to different organic layer Fig. 4-29 The comparison between Current efficiency-I characteristics of OLED with nitrogen- incorporation to different organic layer Fig. 4-30 The comparison between Power efficiency-I characteristics of OLED with nitrogen- incorporation to different organic layer

    [1]D. M. Pai, J. F. Yanus, M. Stolka, “Trap-Controlled Hopping Transport”, J. Phys. Chem, vol.88, pp.4714, 1984

    [2]P. E. Burrows, Z. Shen et al, “Relationship between electroluminescence and current transport in organic heterojunction light-emitting devices”, J. Appl. Phys, vol.79, no.10, pp.7991, 1996

    [3]P. S. Davids, I. H. Campbell, D. L. Smith, “Device model for single carrier organic diodes”, J. Appl. Phys, vol.82, pp.6319, 1997

    [4]G. G. Malliaras, J. C. Scott, “Numerical simulations of the electrical characteristics and the efficiencies of single-layer organic light emitting diodes”, J. Appl. Phys, vol.85, pp.7426, 1999

    [5]B. Ruhstaller, S. A. Carter, S. Barth, W. Riess, J. C. Scott, “Transient and steady-state behavior of space charges in multiplayer organic light-emitting diodes”, J. Appl. Phys, vol.89, pp.4575, 2001

    [6]G. G. Malliaras, J. C. Scott, “The roles of injection and mobility in organic light emitting diodes”, J. Appl. Phys, vol.83, pp.5399, 1998

    [7]C. W. Tang, “Organic electroluminescent diodes”, Appl. Phys. Lett, vol.51, no.913, 1987

    [8]Hany Aziz, “Humidity-induced crystallization of tris (8-hydroxyquinoline) aluminum layers in organic light emitting devices”, Appl. Phys. Lett , vol.72, pp.756, 1998

    [9]A. B. Walker, A. Kambili, S. J. Martin, “Electrical transport modeling in organic electroluminescent devices”, J. Phys.Condens.Matter, vol.14, pp.9825, 2002

    [10]R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani et al. , “Electroluminescence in conjugated polymers”, Nature,vol.397, pp.121, 1999

    [11]J. Staudigel, M. Stobel, F. Steuber, J. Simmerer, “A quantitative numerical model of multiplayer vapor-deposited organic light emitting diodes”, J. Appl. Phys, vol.86, pp.3895, 1999

    [12]W. Brutting, S. Berleb, A. G. Muckl, “Device physics of organic light-emitting diodes based on molecular materials”, Organic Electronics, vol.2, pp.1, 2001

    [13]J. C. Scott, S. Karg, S. A. Carter, “Bipolar charge and current distributions in organic light-emitting diodes”, J. Appl. Phys, vol.82, pp.1454, 1997

    [14]T. Shiga, H. Fujikawa, Y. Taga, “Design of multiwavelength resonant cavities for white organic light-emitting diodes ”, J. Appl. Phys, vol.93, pp.19, 2003

    [15]F. G. Celi, “Organic LED Structure with Improved Efficiency”, IEEE, pp.366, 1997

    [16]Y. Hashimoto, N. Fujimura, “SPACE CHARGE DISTRIBUTION IN NEW FUNCTIONAL ORGANICC LAYER”, IEEE International Conference on Conduction and Breakdown in Solid Dielectrics, 1998

    [17]P. E. Burrows, “Reliability and degradation of organic light emitting devices”, Appl. Phys. Lett, vol.65, pp.2922, 1994

    [18]Quoc Toan Le, “Photoemission study of aluminum/tri-(8-hydroxyquinoline) aluminum and aluminum/LiF/tri-(8-hydroxyquinoline) aluminum interfaces”, J. Appl. Phys, vol.87, pp375, 2000

    [19]S. M. Sze “Physics of Semiconductor Devices”, CENTRAL BOOK COMPANY, Taipei, Taiwan, pp.90-92, 1983

    下載圖示 校內:2004-07-11公開
    校外:2006-07-11公開
    QR CODE