| 研究生: |
李承融 Lee, Cheng-Jung |
|---|---|
| 論文名稱: |
溶液式製程之複合材料於有機薄膜電晶體及電阻式記憶體之應用 Solution-Processed Composite Materials for Organic Thin Film Transistor and Resistive Random Access Memory Applications |
| 指導教授: |
王永和
Wang, Yeong-Her |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 溶膠凝膠 、溶液式製程 、鈣鈦礦 、鋯鎳鋇 、鹼土金屬 、過渡金屬 、五環素 、明膠 、有機薄膜電晶體 、薄膜電晶體 、記憶體 、電阻式記憶體 、高介電常數 、高載子移動率 、螯合效應 、氧空缺 |
| 外文關鍵詞: | sol-gel, solution process, perovskite, zirconate nickelate-barium, alkaline earth metal, Transition metal, pentacene, gelatin, organic thin film transistor (OTFT), thin film transistor (TFT), resistive random access memory (RRAM), high dielectric constant, high carrier mobility, chelation effect, oxygen vacancy |
| 相關次數: | 點閱:179 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有機薄膜電晶體被提出已有30餘年,在這近年來被大家廣為重視及研究,主要是他有著需多比無機半導體的優點,例如低溫、低成本的製程,可大面積製作以及可撓式等等優點。本篇利用有機界認定較穩定受歡迎的材料五環素做為有機電晶體的主動層,並使用鈣鈦礦、鐵、鈷、鎳、吉利丁等化合材料利用溶液式製程手法開發配製出許多高介電係數材料,然後應用在薄膜電晶體與電阻式記憶體上。以溶液式製程配製出高介電常數材料主要優點為:低成本的製程、低溫製成、可應用在大面積及可撓性基板、以及在有機電晶體上有良好的壓電材料特性可降低電晶體的操作電壓;使用溶膠凝膠法合成出鋯鎳酸鋇、硝酸鈷吉利丁、硝酸鐵吉利丁,我們將這些材料使用一般玻璃基板、氧化銦錫玻璃基板、可撓性基板、紙基板等製作成薄膜電晶體與電阻式記憶體元件 ,更進而使用降低環境污染的紙基板製作出薄膜電晶體;在鋯鎳酸鋇當介電層材料的薄膜電晶體中有良好的電特分別為: 起始電壓 -1.1 V、載子移動率 5.2 〖cm〗^2/Vs、次臨界擺幅 0.4 V/decade、電流開關比〖10〗^4,而使用硝酸鈷吉利丁當氧化層材料的電阻式記憶體中也有不錯的電阻式記憶體特性表現,最後將硝酸鐵吉利丁當介電層材料配合使用對環境友善的紙基板製作出薄膜電晶體,在本身使用溶液式製程並在紙基板上製作出元件這頗為困難的實驗組合我們也將其克服並有不錯良好的電晶體特性為: 起始電壓 -1.4 V、載子移動率 8 〖cm〗^2/Vs、次臨界擺幅 0.6 V/decade、電流開關比〖10〗^3,這些在純紙的基板上的電特性是相當不錯的結果。
我們使用的這些化合材料配製出不同新穎材料不僅是對薄膜電晶體及電阻式記憶體突顯出良好特性,加上又使用紙基板與一般的無機製程相比更是對環境有較低的汙染,隨著近年來環保意識的抬頭各界都越來越重視,因此本篇的研究是非常有利於環境更對日後的有機元件發展很高度的延展性。
Organic thin film transistors have been proposed for more than 30 years. In recent years, they have been widely considered and studied by people. Mainly, it has many advantages over inorganic semiconductors, such as low temperature and low cost processes, huge production, good flexibility and so on. This article uses pentacycline that the organic community has identified as a more stable material as the active layer of organic transistors, and uses the compound materials such as perovskite, iron, cobalt, nickel, and gelatin to develop and formulate many solutions by solution process. Then the high dielectric constant material is applied to the thin film transistor and the resistive memory.
The main advantages of formulating high dielectric constant materials in a solution process are: low cost process, low temperature fabrication, application in large area and flexible substrates, and reduced operating voltage by good piezoelectric material properties on organic transistors. The sol-gel method is used to synthesize zirconium lanthanum zirconate, cobalt nitrate, and iron nitrate. These materials are formed into a thin film transistor and Resistive random-access memory element using a general glass substrate, an indium tin oxide glass substrate, a flexible substrate, a paper substrate etc., and further a thin film transistor is formed using a paper substrate which reduces environmental pollution. When zirconium lanthanum hydride is used as a thin film transistor of a dielectric layer material, a good electrical characteristic is: starting voltage -1.1 V, carrier mobility 5.2 〖cm〗^2/Vs, sub-threshold swing 0.4 V/decade, current switching ratio 〖10〗^4. Also using cobalt nitrate gelatin as the oxide material in the resistive memory also has a good resistive memory characteristic. Finally, with a solution process, the iron nitrate gelatin is used as a dielectric layer material to produce a thin film transistor on an environmentally friendly paper substrate. It is a very difficult experimental for components combination on the substrate. The difficulty has been overcame and good transistor characteristics are: Starting voltage -1.4 V, carrier mobility 8 〖cm〗^2/Vs, sub-critical pendulum 0.6 V/decade and the current-to-switch ratio are 〖10〗^3. These electrical characteristics on the substrate of pure paper are quite good.
The different materials we used to formulate different novel materials not only highlight the good characteristics of the thin film transistor and the resistive memory, but also have lower environmental pollution than the general non-mechanical process using the paper substrate. With the increasing awareness of environmental protection in recent years, this study is very beneficial to the environment and is highly scalable to the future development of organic components.
[1-01] F. Ebisawa, T. Kurokawa, and S. Nara, “Electrical properties of polyacety-
lene/polysiloxane interface,” J. Appl. Phys., vol. 54, pp. 3255, 1983.
[1-02] Tsumura, H. Koezuka, and T. Ando, “Macromolecular electronic device:
Fieldeffect transistor with a polythiophene thin film,” Appl. Phys. Lett., vol. 49, pp.
1210, 1986.
[1-03] C. D. Dimitrakopoulos, A. R. Brown, and A. Pomp, “Molecular beam deposited
thin films of pentacene for organic field effect transistor applications,” J. Appl.
Phys., vol. 80, pp. 2501-2508, 1996.
[1-04] B. Crone, A. Dodabalapur, A. Gelperin, L. Torsi, H. E. Katz, A. J. Lovinger, and Z.
Bao, “Electronic sensing of vapors with organic transistors,” Appl. Phys. Lett., vol.
78, pp. 2229-2231, 2001.
[1-05] P. Lin, and F. Yan, “Organic thin-film transistors for chemical and biological sensor,”
Adv. Mater., vol. 24, pp. 34-51, 2012.
[1-06] M. G. Kane, J. Campi, M. S. Hammond, F. P. Cuomo, B. Greening, C. D. Sheraw,
J. A. Nichols, D. J. Gundlach, J. R. Huang, C. C. Kuo, L. Jia, H. Klauk, and T. N.
Jackson, “Analog and digital circuits using organic thin-film transistors on
polyester substrates,” IEEE Electron Device Lett., vol. 21, pp. 534-536, 2000.
[1-07] P. F. Baude, D. A. Ender, M. A. Haase, T. W. Kelley, D. V. Muyres, and S. D. Theiss,
“Pentacene-based radio-frequency identification circuitry,” Appl. Phys. Lett., vol.
82, pp. 3964-3966, 2003.
[1-08] A. C. Tickle, “Thin-film transistors: a new approach to microelectronics,” New
York: Wiley, 1969.
[1-09] M. S. Shur, “Physics of semiconductor devices,” New jersey: Prentice Hall, 1990.
[1-10] D. W. Greve, “Field effect devices and applications,” New jersey: Prentice Hall, 1998.
[1-11] D. R. Gamota, P. Brazis, K. Kalyanasundaram, and J. Zhang, “Printed organic and molecular electronics,” Kluwer Academic Publishers, pp. 359, 2004.
[1-12] S. M. Sze, “Semiconductor devices: physics and technology,”Wiley, 2002.
[1-13] T. W. Hickmott, “Low‐frequency negative resistance in thin anodic oxide films,” J. Appl. Phys., vol. 33, no. 9, pp. 2669–2682, 1962.
[1-14] R. Waser, M. Aono, “Nanoionics-based resistive switching memories,” Nat. Mater., vol. 6, pp. 833-840, 2007.
[1-15] J. J. Yang, M. D. Pickett, X. M. Li, D. A. A. Ohlberg, D. R. Stewart, R. S. Williams,
“Memristive switching mechanism for metal/oxide/metal nanodevices,” Nature
Nanotechnology, vol. 3, pp. 429-433 , 2008.
[1-16] C. Y. Liu, A. Wang, W. Y. Jang, T. Y. Tseng, “ Electrical properties of resistance
switching V-doped SrZrO3 films on textured LaNiO3 bottom electrodes, ” J. Phys. ,
D, Appl. Phys. Lett., vol. 39, p.1156, 2006.
[1-17] C. Y. Liu, T. Y. Tseng, “Resistance switching properties of sol–gel derived SrZrO3
based memory thin films,” J. Phys. D-Appl. Phys., vol.40, pp.2157-2161, 2007.
[1-18] J. J. Yang, F. Miao, M. Pickett, D. Ohlberg, D. Steward, C. Lau, and R. S. Williams,
“The mechanism of electroforming of metal oxide memristive switches,”
Nanotechnology, vol. 20, p. 215201, 2009.
[1-19] T. Fujii, M. Arita, K. Hamada, H. Kondo, H. Kaji, Y. Takahashi, M. Moniwa, I.
Fujiwara, T. Yamaguchi, M. Aoki, Y. Maeno, T. Kobayashi, M. Yoshimaru, “I-V
measurement of NiO nanoregion during observation by transmission electron
microscopy,” J. Appl. Phys., vol. 109, p. 053702, 2011.
[1-20] R.Waser, R. Dittmann, G. Staikov, K. Szot, “Redox‐Based Resistive Switching
Memories – Nanoionic Mechanisms, Prospects, and Challenges,” Advanced Material, vol.21, pp.2632–2663, 2009.
[1-21] C. Y. Han, W. M. Tang, C. H. Leung, C. M. Che, and P. T. Lai, “High-mobility
pentacene thin-film transistor by using Lax Ta(1−x)Oy as gate dielectric,” Org.
Electron., vol. 15, pp. 2499–2504, 2014.
[1-22] D.-J. Yun, S. H. Lee, K. J. Yong, and S. W. Rhee, “Low-voltage bendable pentacene thin-film transistor with stainless steel substrate and polystyrene-coated hafnium silicate dielectric,” ACS Appl. Mater. Interfaces, vol. 4, pp. 2025–2032, 2012.
[1-23] Y. Zhao, G. Dong, L. Wang, and Y. Qiu, “Improved photostability of organic thin
film transistors with tantalum oxide–poly(4-vinylphenol) double gate insulators,”
Appl. Phys. Lett., vol. 90, no. 25, pp. 252 110, 2007.
[1-24] J. Park, J. W. Lee, D. W. Kim, B. J. Park, H. J. Choi, and J. S. Choib, “Pentacene
thin-film transistor with poly(methyl methacrylate-co-methacrylic acid)/TiO2
nanocomposite gate insulator,” Thin Solid Films, vol. 518, pp. 588-590, 2009.
[1-25] X.-H. Zhang, S. P. Tiwari, S.-J. Kim, and B. Kippelen, “Low-voltage pentacene
organic field-effect transistors with high-κ HfO2 gate dielectrics and high stability
under bias stress,” Appl. Phys. Lett., vol. 95, p. 223302, 2009.
[1-26] R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,” J. Appl. Phys., vol. 97, pp. 121301 , 2005.
[1-27] F. C. Chen, C. W. Chu, J. He, Y. Yang, and J. L. Lin, “Organic thin-film transistors
with nanocomposite dielectric gate insulator,” Appl. Phys. Lett., vol. 85, no. 15, pp.
3295–3297, 2004.
[1-28] Y.-C. Chang, C.-Y. Wei, Y.-Y. Chang, T.-Y. Yang, and Y.-H. Wang,“High-mobility
pentacene-based thin-film transistors with synthesized strontium zirconate
nickelate gate insulators,” IEEE Trans. Electron Devices, vol. 60, no. 12, pp. 4234–
4239, Dec. 2013.
[1-29] Ma, L.P.; Liu, J.; Yang, Y. Organic electrical bistable devices and rewritable
memory cells. Appl. Phys. Lett. 2002, 80, 2997–2999. [CrossRef]
[1-30] Ma, L.P.; Pyo, S.M.; Ouyang, J.Y.; Xu, Q.F.; Yang, Y. Nonvolatile electrical
bistability of organic/metal-nanocluster/organic system. Appl. Phys. Lett. 2003, 82,
1419–1421. [CrossRef]
[1-31] Busby, Y.; Monteiro, N.C.; Girleanu, M.; Brinkmann, M.; Ersen, O.; Pireaux, J.J.
3D imaging of filaments in organic resistive memory devices. Org. Electron. 2015,
16, 40–45. [CrossRef]
[1-32] Casula, G.; Cosseddu, P.; Busby, Y.; Pireaux, J.J.; Rosowski, M.; Szczesna, B.T.;
Soliwoda, K.; Celichowski, G.;Grobelny, J.; Novák, J.; et al. Air-stable, non-
volatile resistive memory based on hybrid organic/inorganic nanocomposites. Org.
Electron. 2015, 18, 17–23. [CrossRef]
[1-33] Chang, Y.C.; Wang, Y.H. Resistive switching behavior in gelatin thin films for
nonvolatile memory application. ACS Appl. Mater. Interfaces 2014, 6, 5413–5421.
[CrossRef] [PubMed]
[1-34] C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I.
G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, and J. West, “Organic
thin-film transistor-driven polymer dispersed liquid crystal displays on flexible
polymeric substrates,” Appl. Phys. Lett., vol. 80, no. 6, p. 1088, Feb. 2002, doi:
10.1063/1.1448659.
[1-35] H. T. Yi, M. M. Payne, J. E. Anthony, and V. Podzorov, “Ultra-flexible solution-
processed organic field-effect transistors,” Nature Commun., vol. 3, Dec. 2012, Art.
no. 1259, doi: 10.1038/ncomms2263.
[1-36] M. Uno, N. Isahaya, B.-S. Cha, M. Omori, A. Yamamura, H. Matsui, M. Kudo, Y.
Tanaka, Y. Kanaoka, M. Ito, and J. Takeya, “ High-yield, highly uniform solution-
processed organic transistors integrated into flexible organic circuits,” Adv.
Electron. Mater., vol. 3, no. 1, p. 1600410, Jan. 2017, doi: 10.1002/aelm.201600410.
[1-37] Y. Orhan and H. Büyükgüngör, “Enhancement of biodegradability of disposable
polyethylene in controlled biological soil,” Int. Biodete rioration Biodegradation,
vol. 45, nos. 1–2, pp. 49–55, Jan. 2000. doi: 10.1016/S0964-8305(00)00048-2.
[1-38] R. J. Slack, J. R. Gronow, and N. Voulvoulis, “Hazardous components of household waste,” Critical Rev. Environ. Sci. Technol., vol. 34, no. 5, pp. 419–445, Aug. 2010, doi: 10.1080/10643380490443272.
[1-39] A. T. Zocco, H. You, J. A. Hagen, and A. J. Steckl, “Pentacene organic thin-film
transistors on flexible paper and glass substrates,” Nan-otechnology, vol. 25, no. 9,
p. 094005, Feb. 2014, doi: 10.1088/0957-4484/25/9/094005.
[1-40] B. Peng, X. Ren, Z. Wang, X. Wang, R. C. Roberts, and P. K. L. Chan, “High
performance organic transistor active-matrix driver developed on paper substrate,”
Sci. Rep., vol. 4, Sep. 2014, Art. no. 6430, doi: 10.1038/srep06430.
[1-41] Y.-H. Kim, D.-G. Moon, and J.-I. Han, “Organic TFT array on a paper substrate,”
IEEE Electron Device Lett., vol. 25, no. 10, pp. 702–704, Oct. 2004, doi:
10.1109/LED.2004.836502.
[3-01] C. Y. Han, W. M. Tang, C. H. Leung, C. M. Che, P. T. Lai, “High-mobility pentacene thin-film transistor by using LaxTa(1-x)Oy as gate dielectric,” O. E., vol. 15, pp. 2499–2504, 2014.
[3-02] D. J. Yun, S. H. Lee, K. J. Yong and S. W. Rhee, “Low-voltage bendable pentacene thin-film transistor with stainless steel substrate and polystyrene-coated hafnium silicate dielectric,” ACS Appl. Mater. Interfaces, vol. 4, pp. 2025–2032, 2012.
[3-03] Y. C. Chang, C. Y. Wei, Y. Y. Chang, T. Y. Yang, and Y. H. Wang, “High-mobility
pentacene-based thin-film transistors with synthesized strontium zirconate
nickelate gate insulators,” IEEE Trans. Electr. Dev. Lett., vol. 60, pp. 4525-4530,
2013.
[3-04] J. A. Lewis, E. B. Duoss, and M. Twardowski, “Sol-gel inks,” U. S. patent,
0245266A1, 2008.
[3-05] W. A. Herrmann, N. W. Huber, and O. Runte, “Volatile metal alkoxides according to the concept of donor functionalization,” Angew Chem. Int. Ed. Engl., vol. 34, pp. 2187-2206, 1995.
[3-06] T. Cahyadi, J. N. Tey, S. G. Mhaisalkar, F. Boey, and V. R. Rao, “Investigations of
enhanced device characteristics in pentacene-based field effect transistors with sol-
gel interfacial layer,” Appl. Phys. Lett., vol. 90, pp. 122112-1–122112-3, 2007.
[3-07] R. W. I. de Boer, N. N. Iosad, A. F. Stassen, T. M. Klapwijk, and A. F. Morpurgo,
“Influence of the gate leakage current on the stability of organic single-crystal field-
effect transistors,” Appl. Phys. Lett., vol. 86, 2005.
[3-08] Y. C. Chang, K. J. Lee, C. J. Lee, L. W. Wang, and Y. H. Wang, “Bipolar resistive
switching behavior in sol-gel MgTiNiOx memory device,” IEEE Journal of the
Electron Devices Society, vol. 4, pp. 321-327, 2016.
[3-09] J. T. Anderson, C. L. Munsee, C. M. Hung, T. M. Phung, G. S. Herman, D. C.
Johnson, J. F. Wager, and D. A. Keszler, “Solution-processed hafsox and zircsox
inorganic thin-film dielectrics and nanolaminates,” Adv. Funct. Mater., vol. 17, pp.
2117-2124, 2007.
[3-10] D. K. Owens and R. C. Wendt, “Estimation of the surface free energy of polymers,” J. Appl. Polym. Sci., vol. 13, pp. 1741–1747, 1969.
[3-11] C. Y. Wei, F. Adriyanto, Y. J. Lin, Y. C. Li, T. J. Huang, D. W. Chou, and Y. H.
Wang, “Pentacene-based thin-film transistors with a solution-process hafnium
oxide insulator,” IEEE Electr. Dev. Lett., vol. 30, pp. 1039-1041, 2009.
[3-12] D. Y. Kwok, A. W. Neumann, “Contact angle measurement and contact angle
interpretation,” Adv. Colloid Interface Sci., vol. 81, p. 167, 1999.
[3-13] C. Effertz, S. Lahme, P. Schulz, I. Segger, M. Wuttig, A. Classen, and C. Bolm,
"Design of Novel dielectric surface modifications for perylene thin film
transistors," Adv. Funct. Mater., vol. 22, pp. 415-420, 2012.
[3-14] S. Wijnans, B. J. Gans, F. Wiesbrock, R. Hoogenboom, U. S. Schubert,
“Characterization of a poly(2-oxazoline) library by high-throughput, automated
contact-angle measurements and surface-energy calculations,” Macromol. Rapid
Commun., vol. 25, pp. 1958–1962, 2004.
[3-15] M. Yoshida, S. Uemura, T. Kodzasa, T. Kamata, M. Matsuzawa, T. Ka-wai,
“Surface potential control of an insulator layer for rhe heigh performance organic
FET,” Synth. Met., vol. 137, pp. 967-968, 2003.
[3-16] W. Y. Chou, C. W. Kuo, H. L. Cheng, Y. R. Chen, F. C. Tang, F. Y. Yang, D. Y. Shu,
and C. C. Liao, “Effect of surface free energy in gate dielectric in pentacene thin-
film transistors,” Appl. Phys. Lett., vol. 89, p. 112126, 2006.
[3-17] C. Y. Wei, S. H. Kuo, Y. M. Hung, W. C. Huang, F. Adriyanto, and Y. H. Wang,
“High-mobility pentacene-based thin-film transistors with a solution-processed
barium titanate insulator,” IEEE Electr. Dev. Lett., vol. 32, pp. 90-92, 2011.
[3-18] S. Y. Yang, K. Shin, and C. E. Park, “The effect of gate-dielectric surface energy on pentacene morphology and organic field-effect transistor characteristics,” Adv.
Funct. Mater., vol. 15, pp. 1806-1814, 2005.
[3-19] H. E. Katz, X. M. Hong, A. Dodabalapur, and R. Sarpeshkar, “Organic field-Effect
transistors with polarizable gate insulators,” Journal of Applied Physics., vol. 91,
2002.
[3-20] H. S. Seo, Y. Zhang, M. J. An, J. H. Choi, “Fabrication and characterization of air-
stable, ambipolar heterojunction-based organic light-emitting field-effect
transistors,” O. E., vol. 10, pp. 1293-1299, 2009.
[3-21] J. H. Park, a K. Kim, Y. B. Yoo, S. Y. Park, K. H. Lim, K. H. Lee, H. K. Baik and
Y. S. Kim, “Water adsorption effects of nitrate ion coordinated al 2 o 3 dielectric for
high performance metal-oxide thin-film transistor,” J. Mater. Chem. C, vol. 1, pp.
7166–7174, 2013.
[3-22] J. Yu, G. Liu, A. Liu, Y. Meng, B. Shin and F. Shan, “Solution-processed p-type
copper oxide thin-film transistors fabricated by using a one-step vacuum annealing
technique,” J. Mater. Chem. C, vol. 3, pp. 9509-9513, 2015.
[3-23] S. Lee, B. Koo, J. Shin, E. Lee, H. Park, and H. Kim, “Effects of hydroxyl groups
in polymeric dielectrics on organic transistor performance,” Appl. Phys. Lett., vol.
88, p. 162109, 2006.
[3-24] P. C. R. Varma, J. Colreavy, J. Cassidy, M. Oubaha, C. McDonagh, and B. Duffy,
“Corrosion protection of AA 2024-T3 aluminium alloys using 3, 4-diaminobenzoic
acid chelated zirconium–silane hybrid sol–gels,” Thin Solid Films, vol. 518, pp.
5753–5761, 2010.
[3-25] A. Bananej, A. Hassanpour, H. Razzaghi, M. Vaez Zade, and A. Mohammadi, “The
effect of porosity on the laser induced damage threshold of TiO2 and ZrO2 single
layer films,” Opt. Laser. Technol., vol. 42, pp. 1187–1192, 2010.
[3-26] S. M. Khaled, R. Sui, P. A. Charpentier, and A. S. Rizkalla, “Synthesis of TiO2-
PMMA nanocomposite: using methacrylic acid as a coupling agent,” Langmuir, vol.
23, pp. 3988-3995, 2007.
[3-27] I. Das, and G. De, “Zirconia based superhydrophobic coatings on cotton fabrics
exhibiting excellent durability for versatile use,” Scientific Reports, vol. 5, p. 18503,
2015.
[3-28] H. M. E. Rafie, and M. A. A. Hamed, “Antioxidant and anti-inflammatory activities of silver nanoparticles biosynthesized from aqueous leaves extracts of four
Terminalia species,” Adv. Nat. Sci.: Nanosci. Nanotechnol., vol. 5, p. 035008, 2014.
[3-29] W. A. Herrmann, N. W. Huber, and O. Runte, “Volatile metal alkoxides according to the concept of donor functionalization,” Angew Chem. Int. Ed. Engl., vol. 34, pp. 2187-2206, 1995.
[3-30] S. Lim, K. H. Lee, H. Kim, S. H. Kim, “Optimization of nanocomposite gate
insulators for organic thin film transistors,” O. E., vol. 17, pp. 144–150, 2015.
[3-31] D. Yang, L. Zhang, H. Wang, Y. Wang, Z. Li, “Pentacene-based photodetector in
visible region with vertical field-effect transistor configuration,” IEEE Photonics
Technology Letters, vol. 27, pp. 233-236, 2015.
[3-32] B. X. Yang, C. Y. Tseng, A. S. T. Chiang, “A sol–gel titanium–silicon oxide/organic
hybrid dielectric for low-voltage organic thin fi lm transistors,” Journal of Materials
Chemistry C, vol. 3, pp. 968–972, 2015.
[3-33] H. Tai, X. Li, Y. Jiang, “The enhanced formaldehyde-sensing properties of P3HT-
ZnO hybrid thin film OTFT sensor and further insight into its stability,” Sensors,
vol. 15, pp. 2086–2103, 2015.
[3-34] J. D. Oh, D. K. Kim, J. W. Kim, “Low-voltage pentacene thin-film transistors using Hf-based blend gate dielectrics,” Journal of Materials Chemistry C, vol. 4, pp. 807–814, 2016.
[4-01] Y. C. Chang and Y. H. Wang, “Resistive switching behavior in gelatin thin films
for nonvolatile memory application,” ACS Appl. Mater. Interfaces, vol. 6, pp.
5413−5421, 2014. DOI: https://doi.org/10.1021/am500815n
[4-02] L.P. Ma, J. Liu, Y. Yang, “Organic electrical bistable devices and rewritable
memory cells,” Appl. Phys. Lett., vol. 80, pp. 2997–2999, 2002. DOI:
10.1063/1.1473234
[4-03] L.P. Ma, S.M. Pyo, J.Y. Ouyang, Q.F. Xu, Y. Yang, “Nonvolatile electrical
bistability of organic/metal-nanocluster/organic system,” Appl. Phys. Lett., vol. 82,
pp. 1419–1421, 2003. DOI: https://doi.org/10.1063/1.1556555
[4-04] Y. Busby, N. C. Monteiro, M. Girleanu, M. Brinkmann, O. Ersen, J. J. Pireaux, “3D imaging of filaments in organic resistive memory devices,” Organic Electronics,
vol. 16, pp. 40–45, 2015. DOI: https://doi.org/10.1016/j.orgel.2014.10.039
[4-05] G. Casula, P. Cosseddu, Y. Busby, J. J. Pireaux, M. Rosowski, B. T. Szczesna, K.
Soliwoda, G. Celichowski, J. Grobelny, J. Novák, R. Banerjee, F. Schreiber, A.
Bonfiglio, “Air-stable, non-volatile resistive memory based on hybrid
organic/inorganic nanocomposites,” Organic Electronics, vol. 18, pp. 17–23, 2015.
DOI: https://doi.org/10.1016/j.orgel.2015.01.001
[4-06] B. Pollack, S. Holmberg, D. George, I. Tran, M. Madou, M. Ghazinejad, “Nitrogen-Rich Polyacrylonitrile-Based Graphitic Carbons for Hydrogen Peroxide Sensing,” sensors, vol. 17, issue 10, 2017. doi: 10.3390/s17102407
[4-07] G. Ai, R. Mo, H. Li, and J. Zhong, “Cobalt phosphate modified TiO2 nanowire
arrays as co-catalysts for solar water splitting,” Nanoscale, vol. 7, pp. 6722–6728,
2015. DOI: 10.1039/C5NR00863H
[4-08] Kun-Yi Andrew Lin, Yu-Chien Chen, Chih-Feng Huang, “Magnetic carbon-
supported cobalt prepared from one-step carbonization of hexacyanocobaltate as an
efficient and recyclable catalyst for activating Oxone,” Separation and Purification
Technology, vol. 170, pp. 173–182, 2016. DOI: https://doi.org/10.1016/j.seppur.2016.06.048
[4-09] M. A. Lampert, “Simplified theory of space-charge-limited currents in an insulator with traps,” Phys. Rev., vol. 103, p. 1648, 1956. DOI:
https://doi.org/10.1103/PhysRev.103.1648
[4-10] Y. Nishi, M. Suzuki, and M. Koyama, “Bipolar resistive switch effects in calcium
fluoride thin films deposited on silicon bottom electrodes,” Applied Physics
Express, vol. 6, p. 041202–235, 2013. DOI:
http://dx.doi.org/10.7567/APEX.6.041202
[4-11] R. Waser, and M. Aono, “Nanoionics-based resistive switching Memories,” Nature Materials, vol. 6, pp. 833-840, 2007. doi :10.1038/nmat2023
[4-12] H. Lv, M. Wang, H. Wan, Y. Song, W. Luo, P. Zhou, T. Tang, Y. Lin, R. Huang,
S. Song, J. G. Wu, H. M. Wu, and M. H. Chi, “Endurance enhancement of Cu-oxide
based resistive switching memory with Al top electrode,” Appl. Phys. Lett., vol. 94,
p. 213502, 2009. DOI: https://doi.org/10.1063/1.3142392
[4-13] T. Tungkavet, D. Pattavarakorn, A. Sirivat, “Bio-compatible gelatins (Ala-Gly-Pro-Arg-Gly-Glu-4HypGly-Pro-) and electromechanical properties: effects of
temperature and electric field,” J. Polym. Res., vol. 19, p. 9759, 2012. DOI:
10.1007/s10965-011-9759-3
[4-14] Y. H. Hwang, H. M. An, and W. J. Cho., “Performance improvement of the resistive memory properties of InGaZnO thin films by using microwave irradiation,”
Japanese Journal of Applied Physics, vol. 53, p. 04EJ04, 2014. DOI:
10.7567/JJAP.53.04EJ04
[4-15] H. S. P. Wong, H. Y. Lee, S. Yu, Y. S. Chen, Y. Wu, P. S. Chen, B. Lee, F. T. Chen,
and M. J. Tsai, “Metal–oxide RRAM,” Proceedings of the IEEE, vol. 100, pp.
1951–1970, 2012. DOI: 10.1109/JPROC.2012.2190369
[4-16] Y. H. Do, J. S. Kwak, Y. C. Bae, K. Jung, H. Im, and J. P. Hong, “Oxygen ion
drifted bipolar resistive switching behaviors in TiO2–Al electrode interfaces,” Thin
Solid Films, vol. 518, pp. 4408-4411, 2010. DOI:
https://doi.org/10.1016/j.tsf.2010.01.016
[4-17] H. Shima, F. Takano, H. Muramatsu, H. Akinaga, Y. Tamai, I. H. Inque, and H.
Takagi, “Voltage polarity dependent low-power and high-speed resistance
switching in CoO resistance random access memory with Ta electrode,” Appl. Phys.
Lett, vol. 93, pp. 113504, 2008. DOI: https://doi.org/10.1063/1.2982426
[4-18] X. Wu, P. Zhou, J. Li, L. Y. Chen, H. B. Lv, Y. Y. Lin, and T. A. Tang,
“Reproducible unipolar resistance switching in stoichiometric Zr O 2 films,” Appl.
Phys. Lett. Vol. 90, pp. 183507, 2007. DOI: https://doi.org/10.1063/1.2734900
[4-19] Y. C. Chang, K. J. Lee, C. J. Lee, L. W. Wang, and Y. H. Wang, “Bipolar resistive
switching behavior in sol-gel MgTiNiOx memory device,” IEEE Journal of the
Electron Devices Society, vol. 4, pp. 321-327, 2016. DOI:
10.1109/JEDS.2016.2560879
[4-20] A. Visinoiu, R. Scholz, M. Alexe, and D. Hesse, “Morphology dependence of the
dielectric properties of epitaxial BaTiO3 films and epitaxial BaTiO3/SrTiO3
multilayers,” Appl. Phys. A, vol. 80, pp. 229–235, 2005. DOI: 10.1007/s00339-
004-2770-3.
[5-01] C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I.
G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, and J. West, “Organic
thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible
polymeric substrates,” Appl. Phys. Lett., vol. 80, p. 1088, 2002. DOI:
10.1063/1.1448659
[5-02] Hee Taek Yi, M. M. Payne, J. E. Anthony, V. Podzorov, “Ultra-flexible solution-
processed organic field-effect transistors,” Nature Communications, vol. 3, p. 1259,
2012. DOI: 10.1038/ncomms2263
[5-03] M. Uno, N. Isahaya, B. S. Cha, M. Omori, A. Yamamura, H. Matsui, M. Kudo, Y.
Tanaka, Y. Kanaoka, M. Ito, and J. Takeya, “High-yield, highly uniform solution-
processed organic transistors integrated into flexible organic circuits,” Adv.
Electron. Mater., vol. 3, p. 1600410, 2017. DOI:10.1002/aelm.201600410
[5-04] Y. Orhan, and H. Büyükgüngör, “Enhancement of biodegradability of disposable polyethylene in controlled biological soil,” International Biodeterioration & Biodegradation, vol. 45, pp. 49-55, 2000. DOI : 10.1016/S0964-8305(00)00048-2
[5-05] R. J. Slack, J. R. Gronow, and N. Voulvoulis, “Hazardous components of household waste,” Critical Reviews in Environmental Science and Technology, vol. 34, pp. 419-445, 2010. DOI: 10.1080/10643380490443272
[5-06] A. T. Zocco, H. You, J. A. Hagen, and A. J. Steckl, “Pentacene organic thin-film
transistors on flexible paper and glass substrates,” Nanotechnology, vol. 25, p.
094005, 2014. DOI: 10.1088/0957-4484/25/9/094005
[5-07] B. Peng, X. Ren, Z. Wang, X. Wang, R. C. Roberts, and P. K. L. Chan, “High
performance organic transistor active-matrix driver developed on paper substrate,”
Scientific Reports, vol. 4, p. 6430, 2014. DOI: 10.1038/srep06430
[5-08] Y. H. Kim, D. G. Moon, and J. I. Han, “Organic TFT Array on a Paper Substrate,”
IEEE Electron Device Letters, vol. 25, pp. 702-704, 2004. DOI:
10.1109/LED.2004.836502
[5-09] F. Eder, H. Klauk, M. Halik, U. Zschieschang, G. Schmid, and C. Dehm, “Organic
electronics on paper,” Appl. Phys. Lett., vol. 84, p. 2673, 2004. DOI:
10.1063/1.1690870
[5-10] M. I. Vladu, P. A. Troshin, M. Reisinger, L. Shmygleva, Y. Kanbur, G.
Schwabegger, M. Bodea, R. Schwödiauer, A. Mumyatov, J. W. Fergus, V. F.
Razumov, H. Sitter, N. S. Sariciftci, and S. Bauer, “Biocompatible and
biodegradable materials for organic field-effect transistors,” Adv. Funct. Mater.,
vol. 20, pp. 4069–4076, 2010. DOI:10.1002/adfm.201001031
[5-11] M. I. Vladu, P. A. Troshin, M. Reisinger, G. Schwabegger, M. Ullah, R.
Schwoediauer, A. Mumyatov, M. Bodea, J. W. Fergus, V. F. Razumov, H. Sitter,
S. Bauer, N. S. Sariciftci, “Environmentally sustainable organic field effect
transistors,” Organic Electronics, vol. 11, pp. 1974–1990, 2010. DOI:
10.1016/j.orgel.2010.09.007
[5-12] M. I. Vladu, N. S. Sariciftci, and S. Bauer, “Exotic materials for bio-organic
electronics,” J. Mater. Chem., vol. 21, pp. 1350–1361, 2011.
DOI:10.1039/C0JM02444A
[5-13] Y. C. Chang, and Y. H. Wang, “Resistive switching behavior in gelatin thin films
for nonvolatile memory application,” ACS Applied Materials & Interfaces, vol. 6,
pp 5413−5421, 2014. DOI: 10.1021/am500815n
[5-14] I. M.E. Lacroix, E.C.Y., L. Chan, “Food-derived dipeptidyl-peptidase IV inhibitors
as a potential approach for glycemic regulation – Current knowledge and future research considerations,” Trends in Food Science & Technology, vol. 54, pp 1-16,
2016. DOI:10.14288/1.0343571
[5-15] U. Akbulut, S. Sungur, and Ş. Pekyardimci, “Polyester Film Strips Coated with
Photographic Gelatin Containing Immobilized Invertase,” Journal of
Macromolecular Science: Part A - Chemistry, vol. 28, pp. 239-247, 1991.
DOI:10.1080/00222339108054406
[5-16] L. K. Mao, J. C. Hwang, Y. L. Chueh, “Materials and interfaces issues in
pentacene/PTCDI-C-8 ambipolar organic field-effect transistors with solution-
based gelatin dielectric,” Organic Electronics, vol. 15 10, p.p. 2400-2407, 2014.
DOI: 10.1016/j.orgel.2014.06.040
[5-17] Y. He, J. Sun, C. Qian, L. a. Kong, J. Jiang, J. Yang, H0 Li, and Y. Gao, “Solution-
Processed Natural Gelatin Electrolytes Coupled Oxide Field-Effect Transistors,”
Organic Electronics, vol. 38, p.p. 357-361, 2016. DOI:
10.1016/j.orgel.2016.09.017
[5-18] A. Gerlach, S. Sellner, S. Kowark, and F. Schreiber, “In-situ X-ray scattering
studies of OFET interfaces,” Physics of the Solid State A, vol. 205, pp. 461-474,
2008. DOI:10.1002/pssa.200723411
[5-19] Y. C. Chang, C. Y. Wei, Y. Y. Chang, T. Y. Yang, and Y. H. Wang, “High-mobility
pentacene-based thin-film transistors with synthesized strontium zirconate
nickelate gate insulators,” IEEE Transactions on Electron Devices, vol. 60, pp.
4234-4239, 2013. DOI: 10.1109/TED.2013.2287497
[5-20] Y. Wu, Y. Li, and B. S. Ong, “Printed silver ohmic contacts for high-mobility
organic thin-film transistors,” J. Am. Chem. Soc., vol. 128, p. 4203, 2006. DOI:
10.1021/ja058725w
[5-21] Y. Wu, Y. Li, B. S. Ong, P. Liu, S. Gardner, and B. Chiang, “High-performance
organic thin-film transistors with solution-printed gold contacts,” Adv. Mater., vol.
17, pp. 184-187, 2005. DOI:10.1002/adma.200400690
[5-22] Y. Qiu, Y. Hu, G. Dong, L. Wang, J. Xie, and Y. Ma, “H2O effect on the stability
of organic thin-film field-effect transistors,” Appl. Phys. Lett., vol. 83, p. 1644,
2003.
[5-23] K. Shin, C. Yang, S. Y. Yang, H. Jeon, and C. E. Park, “Effects of polymer gate
dielectrics roughness on pentacene field-effect transistors,” Appl. Phys. Lett., vol.
88, p. 072109, 2006. DOI:10.1063/1.2176858
[5-24] S. Steudel, S. D. Vusser, S. D. Jonge, D. Janssen, S. Verlaak, J. Genoe, and P.
Heremans, “Influence of the dielectric roughness on the performance of pentacene
transistors,” Appl. Phys. Lett., vol. 85, p. 4400, 2004. DOI:10.1063/1.1815042
[5-25] M. C. Kwan, K. H. Cheng, P. T. Lai, C. M. Che, “Improved carrier mobility for
pentacene TFT by NH3 annealing of gate dielectric,” Solid-State Electronics, vol.
51, pp. 77–80, 2007. DOI:10.1016/j.sse.2006.11.005
[5-26] D. K. Owens and R. C. Wendt, “Estimation of the surface free energy of polymers,”
J. Appl. Polym. Sci., vol. 13, pp. 1741–1747, 1969.
DOI:10.1002/app.1969.070130815
[5-27] C. Y. Wei, S. H. Kuo, Y. M. Hung, W. C. Huang, F. Adriyanto, and Y. H. Wang,
“High-mobility pentacene-based thin-film transistors with a solution-processed
barium titanate insulator,” IEEE Electron Device Letters, vol. 32, pp. 90-92, 2011.
DOI: 10.1109/LED.2010.2084559
[5-28] R. Ruiz, D. Choudhary, B. Nickel, T. Toccoli, K.-C. Chang, A. C. Mayer, P. Clancy,
J. M. Blakely, R. L. Headrick, S. Iannotta, and G. G. Malliaras, “Pentacene Thin
Film Growth.” Chem. Mater., vol. 16, pp. 4497-4508, Sep. 2004.
[5-29] W. Y. Chou, C. W. Kuo, H. L. Cheng, Y. R. Chen, F. C. Tang, F. Y. Yang, D. Y.
Shu, and C. C. Liao, “Effect of surface free energy in gate dielectric in pentacene
thin-film transistors,” Appl. Phys. Lett., vol. 89, p. 112126, 2006.
DOI:10.1063/1.2354426
校內:2024-08-08公開