簡易檢索 / 詳目顯示

研究生: 王昱仁
Wang, Yu-Jen
論文名稱: 以有機金屬氣相沉積法成長氮砷化銦鎵太陽能電池之研製與分析
Fabrication and Analysis of InGaAsN-based Solar Cells Grown by MOVPE
指導教授: 蘇炎坤
Su, Yan-Kuin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 107
中文關鍵詞: 有機金屬氣相沉積高解析X射線繞射儀氮砷化銦鎵晶格匹配太陽能電池
外文關鍵詞: MOVPE, UV-VIS-NIR, InGaAsN, lattice-match, solar cells
相關次數: 點閱:111下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文之主要目的在於探討氮砷化銦鎵化合物半導體之基本特性,並研究發展此種與鍺或砷化鎵晶格匹配且能隙接近1 eV的材料,因其具有相當大的潛力可望作為下一個世代高效率太陽能電池的第三個接面,以提升整體轉換效率。
      從在砷化鎵基板上成長氮砷化銦鎵磊晶層開始,我們利用高解析X射線繞射儀與紫外光/可見光分光光譜儀等量測設備分析成長材料之銦與氮的含量組成與能隙大小。為了使氮砷化銦鎵之吸收波長達到1 eV並同時降低晶格常數的不匹配,必須經由TMIn/III與DMHy/VT比例的調整精確控制銦與氮含量之組成。藉由降低磊晶溫度、適當的成長速率與相當高的DMHy/VT比例可以使得不易溶入的氮原子組成提升。其次,我們利用TMGa成長氮砷化銦鎵磊晶層,除了從量測結果顯示其具有較佳的結晶品質外,也可避免因TEGa與DMHy之間強烈的共裂解效應而有大幅降低成長速率的問題。在經由一系列磊晶參數的調整後,我們成功地在600°C、575°C、550°C與525°C等不同磊晶溫度下於砷化鎵基板上成長晶格匹配且能隙分別為1.037 eV、1.022 eV、0.967 eV以及1.039 eV的氮砷化銦鎵半導體。但值得注意的是,在525°C這樣低溫的成長條件下,將大幅降低磊晶成長速率,且樣品同時會有較為粗糙的表面。
      於是,我們利用各個不同溫度下成長的氮砷化銦鎵作為本質層以吸收太陽能頻譜長波長的區段,製作雙異質接面p-GaAs/i-InGaAsN/n-GaAs太陽能電池。量測元件效率顯示,以550°C所成長的氮砷化銦鎵磊晶層具有較佳的光電特性,使得太陽能電池之短路電流密度與轉換效率分別可到達11.56 mA/cm2與1.79%。由於氮砷化銦鎵材料本身的特性限制轉換效率的提升,因此我們更進一步地嘗試增加吸收層厚度或減少其含氮量以最佳化元件結構。當吸收層含氮量由3.3%減少至2.8%時,元件短路電流密度將有34.9%的增加幅度並使轉換效率提升至2.47%。另一方面,將吸收層厚度從600 nm增加至1.5 μm時,太陽能電池之短路電流密度更有高達46.9%的提升並增加至16.98 mA/cm2,轉換效率可達2.69%。
      在未來,我們可以嘗試著將所成長的氮砷化銦鎵太陽能電池作為第三個接面應用在InGaP/GaAs/1 eV/Ge多接面太陽能電池元件結構中,更進一步地提升整體的效率。

      The main purpose of this thesis is to investigate the dilute-nitride alloys and develop the InGaAsN materials lattice-matched to GaAs or Ge with near 1 eV bandgap for the use as a third-junction in the next generation of ultrahigh-efficiency four-junction solar cells.
      In the study of growing InGaAsN layers on GaAs substrates by MOVPE, high resolution X-ray diffraction and UV-VIS-NIR spectrophotometer were performed to characterize the epitaxial layers including the In, N composition and the material bandgap. To extend the absorption wavelength to 1 eV and reduce the lattice constant mismatch, the In and N content must be accurately controlled by TMIn/III ratio and DMHy/VT ratio. Using low temperature, moderate growth rate and high DMHy/VT ratio would enhance N incorporation. In addition, the use of TMGa instead of TEGa as gallium source revealed the better crystal quality and it could avoid the strong co-pyrolysis effect dramatically decreasing the growth rate. Then, the InGaAsN bulk layers were successfully grown on GaAs substrates within less than 800 ppm lattice mismatch under various growth temperature of 600°C, 575°C, 550°C and 525°C with the bandgap of 1.037 eV, 1.022 eV, 0.967 eV and 1.039 eV respectively. Especially, epitaxial temperature of 525°C was too low to be used for the device application due to the quite slow growth rate and relatively rough surface.
      Double heterojunction p-GaAs/i-InGaAsN/n-GaAs solar cells were also fabricated by introducing the InGaAsN intrinsic layer grown at different epitaxial temperatures to absorb the long wavelength region. In particular, the better optoelectronic properties of near 1 eV InGaAsN epilayer lattice-matched to GaAs could be obtained under the optimized growth temperature of 550°C, thus the short-circuit current density and conversion efficiency could reach 11.56 mA/cm2 and 1.79% respectively. Furthermore, we tried to optimize the device structure by increasing the absorption layer thickness to 1.5 μm and lowering the N content to 2.8% in the InGaAsN layer, the short-circuit current density could dramatically increase to 16.98 mA/cm2 and 15.59 mA/cm2 with the relative enhancement of 46.9% and 34.9% respectively, thus the energy conversion efficiency could be further improved to 2.69% and 2.47%.
      In the future, our long-term goal is to develop the InGaP/GaAs/1 eV/Ge tandem solar cells and apply the InGaAsN-based solar cells fabricated in this thesis as the third-junction to further improve the energy conversion efficiency.

    Abstract (in Chinese) I Abstract (in English) II Acknowledgement IV Contents VI Table Captions IX Figure Captions XI Chapter 1 Introduction 1 1.1 Background: Solar cells 1 1.2 Advantages and drawbacks of III-V solar cells 3 1.3 High-efficiency solar cells from III-V compound semiconductors 3 1.4 Motivation: InGaAsN-based solar cells with near 1 eV bandgap 5 1.5 Organization of this thesis 7 Bibliography-Chapter 1 11 Chapter 2 MOVPE System and Related Material, Device Characterization Techniques 15 2.1 Metal-Organic Vapor Phase Epitaxy (MOVPE) system 15 2.1.1 Thermodynamically limited region 17 2.1.2 Mass-transport-limited region 18 2.1.3 Surface kinetically limited region 18 2.2 High resolution X-ray diffraction (HRXRD) 19 2.3 UV-Vis-NIR spectrophotometer 22 2.4 Solar simulator and I-V measurement system 23 Bibliography-Chapter 2 28 Chapter 3 Fundamentals of InGaAsN Alloys and Solar Cells 29 3.1 Dilute-nitride semiconductors 29 3.1.1 Nitrogen incorporation effect 30 3.1.2 Band anti-crossing (BAC) model in III-V-N compounds 33 3.1.3 Electron effective mass 35 3.1.4 Electron, hole mobility and carrier lifetime 35 3.1.5 Miscibility gap 36 3.1.6 Nitrogen penalty effect 37 3.2 III-V solar cells and devices physics 38 3.2.1 Solar spectrum 38 3.2.2 Device physics 38 Bibliography-Chapter 3 44 Chapter 4 MOVPE Growth of 1 eV InxGa1-xAs1-yNy Epilayer Lattice-Matched to GaAs 48 4.1 MOVPE consideration of dilute-nitride alloys 48 4.2 Selection of group-III source for the growth of InxGa1-xAs1-yNy 50 4.2.1 Experimental detail 51 4.2.2 TMGa as gallium source for InGaAsN epilayer 52 4.2.3 TEGa as gallium source for InGaAsN epilayer 53 4.2.4 Co-pyrolysis effect 53 4.2.5 Summary 55 4.3 Lattice-matched InxGa1-xAs1-yNy near 1 eV under various Tg 55 4.3.1 Experimental detail 56 4.3.2 InxGa1-xAs1-yNy epilayer grown at 600°C 56 4.3.3 InxGa1-xAs1-yNy epilayer grown at 625°C 57 4.3.4 InxGa1-xAs1-yNy epilayer grown at 575°C 58 4.3.5 InxGa1-xAs1-yNy epilayer grown at 550°C 59 4.3.6 InxGa1-xAs1-yNy epilayer grown at 525°C 59 4.3.7 Summary 60 Bibliography-Chapter 4 81 Chapter 5 Double Heterojunction p-GaAs/i-InGaAsN/n-GaAs Solar Cells 83 5.1 Double heterojunction p-i-n solar cell structures 83 5.1.1 Epitaxial prerequisites of device application 84 5.1.2 Fabrication of solar cell devices 85 5.1.3 Device performance of InGaAsN-based solar cells 85 5.2 Optimization of InGaAsN-based solar cells 86 5.2.1 InGaAsN with various thickness 87 5.2.2 InGaAsN layer with lower N content 88 5.3 Post-annealing effect on device performance 89 Bibliography-Chapter 5 100 Chapter 6 Conclusion and Future Prospects 103 6.1 Conclusion 103 6.2 Future prospects 104 Bibliography-Chapter 6 107

    Bibliography-Chapter 1
    [1] A. E. Becquerel, “Recherches sur les effets de la radiation chimique de la lumière solaire, au moyen des courants électriques”, Compt. Rend. Acad. Sci., vol. 9, pp. 145-149, pp. 561-567, 1839.
    [2] W. G. Adams and R. E. Day, “The action of light on selenium”, Proc. Roy. Soc. A, vol. 25, pp. 113-117, June 1876.
    [3] D. M. Chapin, C. S. Fuller and G. L. Pearson, “A new silicon p-n junction photocell for converting solar radiation into electrical power”, J. Appl. Phys., vol. 25, no. 5, pp. 676-677, May 1954.
    [4] R. Gremmelmaier, “Gallium-arsenic photoelement”, Z. Naturforsch. A, vol. 19, pp. 501-502, 1955.
    [5] D. A. Jenny, J. J. Loferski and P. Rappaport, “Photovoltaic effect in GaAs p-n junctions and solar energy conversion”, Phys. Rev., vol. 101, no.3, pp. 1208-1209, Feb. 1956.
    [6] Zh. I. Alferov, V. M. Andreev, M. B. Kagan, I. I. Protasov and V. G. Trofim, “Solar-energy converters based on p-n AlxGa1-xAs-GaAs heterojunctions”, Sov. Phys. Semicond., vol. 4, no. 12, pp. 2047-2048, June 1971.
    [7] J. M. Woodall and H. J. Hovel, “High-efficiency Ga1-xAlxAs-GaAs solar cells”, Appl. Phys. Lett., vol. 21, no. 8, pp. 379-381, Oct. 1972.
    [8] Mary D. Archer and Robert Hill, “Clean Electricity from Photovoltaics (Series on Photoconversion of Solar Energy, Vol. 1)”, Imperial College Press, chap. 13, pp. 585-607, 2001.
    [9] C. Amano, H. Sugiura, A. Yamamoto and M. Yamaguchi, “20.2% efficiency Al0.4Ga0.6As/GaAs tandem solar cells grown by molecular beam epitaxy”, Appl. Phys. Lett., vol. 51, no. 24, pp. 1998-2000, Dec. 1987.
    [10] J. M. Olson, S. R. Kurtz, A. E. Kibbler and P. Faine, “A 27.3% efficient Ga0.5In0.5P/GaAs tandem solar cell”, Appl. Phys. Lett., vol. 56, no. 7, pp. 623-625, Feb. 1990.
    [11] T. Takamoto, E. Ikeda, H. Kurita and M. Ohmori, “Over 30% efficient InGaP/GaAs tandem solar cells”, Appl. Phys. Lett., vol. 70, no. 3, pp. 381-383, Jan. 1997.
    [12] X. Mathew, G. W. Thompson, V. P. Singh, J. C. McClure, S. Velumani, N. R. Mathews and P. J. Sebastian, “Development of CdTe thin films on flexible substrates—a review”, Sol. Energy Mater. Sol. Cells, vol. 76, no. 3, pp. 293-303, Mar. 2003.
    [13] K. Ramanathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward and A. Duda, “Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells”, Prog. Photovolt: Res. Appl., vol. 11, no. 4, pp. 225-230, June 2003.
    [14] B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, vol. 353, pp. 737-740, Oct. 1991.
    [15] National Center for Photovoltaics, National Renewable Energy Laboratory (NREL), “Best Research-Cell Efficiencies”, Rev. 11-07-07, 2008.
    [16] J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions”, Appl. Phys. Lett., vol. 93, no. 12, pp. 123505, Sep. 2008.
    [17] W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight”, Appl. Phys. Lett., vol. 94, no. 22, pp. 223504, June 2009.
    [18] Alan F. Blackwell and David MacKay, “Power”, Cambrideg University Press, chap. 1, pp. 4-20, 2005.
    [19] H. Melchior, “Demodulation and Photodetection Techniques,” in F. T. Arecchi and E. O. Schulz-Dubois, Eds., Laser Handbook, Vol. 1, North-Holland, Amsterdam, 1972.
    [20] T. Takamoto, T. Agui, K. Kamimura, M. Kaneiwa, M. Imaizumi, S. Matsuda and M. Yamaguchi, “Multijunction solar cell technologies - high efficiency, radiation resistance, and concentrator applications”, in Proc. of 3rd World Conf. on Photovoltaic Energy Conversion, Osaka, Japan, vol. 1, pp. 581-586, 11-18 May, 2003.
    [21] American Society for Testing and Materials (ASTM), “ASTM G173-03 Standard Tables for Reference Solar Spectral Irradiances”, 1992.
    [22] E. D. Jackson, “Areas for improvement of the semiconductor solar energy converter ”, in Transactions of the Conference on the Use of Solar Energy, University of Arizona Press, Tucson, Arizona, USA, vol. 5, pp. 122-126, 1958.
    [23] R. K. Jain and D. J. Flood, “Monolithic and mechanical multijunction space solar cells”, in Proceedings of the 25th Intersociety Energy Conversion Engineering Conference, IECEC-90, Reno, NV, USA, vol. 1, pp. 581-586, 12-17 Aug. 1990.
    [24] L. C. Dinetta, M. H. Hannon, J. R. Cummings, J. B. McNeely and A. M. Barnett, “AlGaAs top solar cell for mechanical attachment in a multi-junction tandem concentrator solar cell stack”, in Proceedings of the 25th Intersociety Energy Conversion Engineering Conference, IECEC-90, Reno, NV, USA, vol. 1, pp. 587-592, 12-17 Aug. 1990.
    [25] S. M. Bedair, M. F. Lamorte and J. R. Hauser, “A two-junction cascade solar-cell structure”, Appl. Phys. Lett., vol. 34, no. 1, pp. 38-39, Jan. 1979.
    [26] S. M. Bedair, S. B. Phatak and J. R. Hauser, “Material and device considerations for cascade solar cells”, IEEE Trans. Electron Devices, vol. 27, no. 4, pp. 822-831, April 1980.
    [27] J. A. Hutchby, R. J. Markunas, M. L. Timmons, P. K. Chiang and S. M. Bedair, “A review of multijunction concentrator solar cells”, in Proc. of the 18th IEEE Photovoltaic Specialists Conf., Piscataway, Las Vegas, USA, pp. 20-27, 1985.
    [28] H. Sugiura, C. Amano, A. Yamamoto and M. Yamaguchi, “Double heterostructure GaAs tunnel junction for a AlGaAs/GaAs tandem solar cell”, Jpn. J. Appl. Phys., vol. 27, no. 2, pp. 269-272, Feb. 1987.
    [29] C. Amano, H. Sugiura, M. Yamahuchi and K. Hane, “Fabrication and numerical analysis of AlGaAs/GaAs tandem solar cells with tunnel interconnections”, IEEE Trans. Electron Devices, vol. 36, no. 6, pp. 1026-1035, June 1989.
    [30] R. R. King, N. H. Karam, J. H. Ermer, M. Haddad, P. Colter, T. Isshiki, H. Yoon, H. L. Cotal, D. E. Joslin, D. D. Krut, R. Sudharsanan, K. Edmondson, B. T. Cavicchi and D. R. Lillington, “Next-generation, high-efficiency III–V multijunction cells”, in Proc. of the 28th IEEE Photovoltaic Specialists Conf., pp. 998-1001, 15-22 Sep., 2000.
    [31] H. L. Cotal, D. R. Lillington, J. H. Ermer, R. R. King, N. H. Karam, S. R. Kurtz, D. J. Friedman, J. M. Olson, J. S. Ward, A. Duda, K. A. Emery and T. Moriarty, “Triple-junction solar cell efficiencies above 32%: the promise and challenges of their application in high-conceniration-ratio PV systems”, in Proc. of the 28th IEEE Photovoltaic Specialists Conf., pp. 955-960, 15-22 Sep., 2000.
    [32] M. A. Green, K. Emery, D. L. King, S. Igari and W. Warta, “Solar cell efficiency tables (version 18)”, Prog. Photovolt: Res. Appl., vol. 9, no. 4, pp. 287-293, July 2001.
    [33] M. Yamaguchi, K.-I. Nishimura, T. Sasaki, H. Suzuki, K. Arafune, N. Kojima, Y. Ohsita, Y. Okada, A. Yamamoto, T. Takamoto and K. Araki, “Novel materials for high-efficiency III–V multi-junction solar cells”, Solar Energy, vol. 82, no. 2, pp. 173-180, Feb. 2008.
    [34] S. R. Kurtz, D. Myers and J. M. Olson, “Projected performance of three- and four-junction devices using GaAs and GaInP”, in Proc. of the 26th IEEE Photovoltaic Specialists Conf., Anaheim, California, New York, USA, pp. 875-878, 1997.
    [35] M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki and Y. Yazawa, “GaInNAs: A novel material for long-wavelength-range laser diodes with excellent high-temperature performance”, Jpn. J. Appl. Phys., vol. 35, part 1, no. 2B, pp. 1273-1275, Feb. 1996.
    [36] J. F. Geisz, D. J. Friedman, J. M. Olson, S. R. Kurtz and B. M. Keyes, “Photocurrent of 1 eV GaInNAs lattice-matched to GaAs”, J. Cryst. Growth, vol. 195, no. 1-4, pp. 401-408, Dec. 1998.
    [37] D. J. Friedman, J. F. Geisz, S. R. Kurtz and J. M. Olson, “1-eV solar cells with GaInNAs active layer”, J. Cryst. Growth, vol. 195, no. 1-4, pp. 409-415, Dec. 1998.
    [38] S. B. Zhang and S.-H. Wei, “Nitrogen solubility and N-induced defect complexes in epitaxial GaAs: N”, Phys. Rev. Lett., vol. 86, No. 9, pp. 1789-1792, Feb. 2001.
    [39] S. R. Kurtz, A. A. Allerman, E. D. Jones, J. M. Gee, J. J. Banas and B. E. Hammons, “InGaAsN solar cells with 1.0 eV band gap, lattice matched to GaAs”, Appl. Phys. Lett., vol. 74, no. 5, pp. 729-731, Feb. 1999.
    [40] S. R. Kurtz, A. A. Allerman, C. H. Seager, R. M. Sieg and E. D. Jones, “Minority carrier diffusion, defects, and localization in InGaAsN, with 2% nitrogen”, Appl. Phys. Lett., vol. 77, no. 3, pp. 401-402, July 2000.

    Bibliography-Chapter 2
    [1] Aixtron 200/4 Operation Manual, Aixtron AG, Rev.: 2.1, Chapter 1, pp. 6.
    [2] Carl Asplund’s doctoral dissertation, “Epitaxy of GaAs-based long-wavelength vertical cavity lasers”, Royal Institute of Technology (KTH), Department of Microelectronics and Information Technology, Kista, Sweden, 2003.
    [3] Gerald B. Stringfellow, “Organometallic Vapor-Phase Epitaxy: Theory and Practice”, 2nd Edition, Academic Press, San Diego, 1999.
    [4] G.-Y. Plaine, C. Asplund, P. Sundgren, S. Mogg and M. Hammar, “Low-temperature metal-organic vapor-phase epitaxy growth and performance of 1.3-µm GaInNAs/GaAs single quantum well lasers”, Jpn. J. Appl. Phys., vol. 41, part 1, no. 2B, pp. 1040-1042, Feb. 2002.
    [5] E. Bourret-Courchesne, Q. Ye, D. W. Peters, J. Arnold, M. Ahmed, S. J. C. Irvine, R. Kanjolia, L. M. Smith and S. A. Rushworth, “Pyrolysis of dimethylhydrazine and its co-pyrolysis with triethylgallium”, J. Cryst. Growth, vol. 217, no. 1-2, pp. 47-54, July 2000.
    [6] D. K. Bowen and B. K. Tanner, “High Resolution X-ray Diffractometry and Topography”, CRC Press, USA, Feb. 1998.
    [7] A. T. Macrander, G. P. Schwartz and G. J. Gualtieri, “X-ray and Raman characterization of AlSb/GaSb strained layer superlattices and quasiperiodic Fibonacci lattices”, J. Appl. Phys., vol. 64, no. 12, pp. 6733-6745, Dec. 1988.
    [8] W. G. Bi, F. Deng, S. S. Lau and C. W. Tu, “High resolution x-ray diffraction studies of AlGaP grown by gas-source molecular-beam epitaxy”, J. Vac. Sci. Technol. B, vol. 13, no. 2, pp. 754-757, Mar. 1995.
    [9] S. H. Wemple and J. A. Seman, “Optical transmission through multilayered structures”, Appl. Opt., vol. 12, no. 12, pp. 2947-2949, Dec. 1973.
    [10] J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements”, Appl. Phys. Lett., vol. 71, no. 18, pp. 2572-2574, Nov. 1997.
    [11] A. Hagfeldt and M. Graetzel, “Light-induced redox reactions in nanocrystalline systems”, Chem. Rev., vol. 95, no. 1, pp 49-68, Jan. 1995.
    [12] Mark Fox, “Optical Properties of Solids”, 2nd Edition, Oxford University Press, 2010.

    Bibliography-Chapter 3
    [1] M. Weyers, M. Sato and H. Ando, “Red shift of photoluminescence and absorption in dilute GaAsN alloy layers”, Jpn. J. Appl. Phys., vo. 31, part 2, no. 7A, pp. L853-L855, July 1992.
    [2] M. Kondow, K. Uomi, K. Hosomi and T. Mozume, “Gas-source molecular beam epitaxy of GaNxAs1-x using a N radical as the N source”, Jpn. J. Appl. Phys., vol. 33, part 2, no. 8A, pp. L1056-L1058, Aug. 1994.
    [3] M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki and Y. Yazawa, “GaInNAs: A Novel Material for Long-Wavelength-Range Laser Diodes with Excellent High-Temperature Performance”, Jpn. J. Appl. Phys., vol. 35, part 1, no. 2B, pp. 1273-1275, Feb. 1996.
    [4] J. S. Harris Jr., “GaInNAs long-wavelength lasers: progress and challenges”, Semicond. Sci. Technol., vol. 17, no. 8, pp. 880-891, July 2002.
    [5] S. R. Kurtz, D. Myers and J. M. Olson, “Projected performance of three- and four-junction devices using GaAs and GaInP”, in Proc. of the 26th IEEE Photovoltaic Specialists Conf., Anaheim, California, New York, USA, pp. 875-878, 1997.
    [6] J. F. Geisz, D. J. Friedman, J. M. Olson, S. R. Kurtz and B. M. Keyes, “Photocurrent of 1 eV GaInNAs lattice-matched to GaAs”, J. Cryst. Growth, vol. 195, no. 1-4, pp. 401-408, Dec. 1998.
    [7] D. J. Friedman, J. F. Geisz, S. R. Kurtz and J. M. Olson, “1-eV solar cells with GaInNAs active layer”, J. Cryst. Growth, vol. 195, no. 1-4, pp. 409-415, Dec. 1998.
    [8] S. R. Kurtz, A. A. Allerman, C. H. Seager, R. M. Sieg and E. D. Jones, “Minority carrier diffusion, defects, and localization in InGaAsN, with 2% nitrogen”, Appl. Phys. Lett., vol. 77, no. 3, pp. 401-402, July 2000.
    [9] D. B. Jackrel, S. R. Bank, H. B. Yuen, M. A. Wistey, J. S. Harris Jr., A. J. Ptak, S. W. Johnston, D. J. Friedman and S. R. Kurtz, “Dilute nitride GaInNAs and GaInNAsSb solar cells by molecular beam epitaxy”, J. Appl. Phys., vol. 101, no. 11, pp. 114916, June 2007.
    [10] Y. Kamikawa-Shimizu, S. Niki and Y. Okada, “Fabrication of homojunction GaInNAs solar cells by atomic hydrogen-assisted molecular beam epitaxy”, Sol. Energy Mater. Sol. Cells, vol. 93, no. 6-7, pp. 1120-1123, June 2009.
    [11] J. C. Phillips and G. Lucovsky, “Bonds and bands in semiconductors”, 2nd Edition, Momentum Press, USA, Nov. 30, 2009.
    [12] H. P. Hjalmarson, P. Vogl, D. J. Wolford and J. D. Dow, “Theory of substitutional deep traps in covalent semiconductors”, Phys. Rev. Lett., vol. 44, no. 12, pp. 810-813, Mar. 1980.
    [13] M. Henini, “Dilute Nitride Semiconductors”, 1st Edition, Elsevier Science Publication, Apr. 2005.
    [14] W. G. Bi and C. W. Tu, “Bowing parameter of the band-gap energy of GaNxAs1-x”, Appl. Phys. Lett., vol. 70, no. 12, pp. 1608-1610, Mar. 1997.
    [15] K. Uesugi and I. Suemune, “Bandgap energy of GaNAs alloys grown on (001) GaAs by metalorganic molecular beam epitaxy”, Jpn. J. Appl. Phys., vol. 36, part 2, no. 12A, pp. L1572-L1575, Dec. 1997.
    [16] S. Francoeur, G. Sivaraman, Y. Qiu, S. Nikishin and H. Temkin, “Luminescence of as-grown and thermally annealed GaAsN/GaAs”, Appl. Phys. Lett., vol. 72, no. 15, pp. 1857-1859, Apr. 1998.
    [17] S. Sakai, Y. Ueta and Y. Terauchi, “Band gap energy and band lineup of III-V alloy semiconductors incorporating nitrogen and boron”, Jpn. J. Appl. Phys., vol. 32, part 1, no. 10, pp. 4413-4417, Oct. 1993.
    [18] S. Sakai and T. Abe, Extd. Abstr. 41st Spring Meeting, Jpn. Soc. Appl. Phys., Tokyo, Japan, pp. 186, 1994.
    [19] S.-H. Wei and A. Zunger, “Giant and composition-dependent optical bowing coefficient in GaAsN alloys”, Phys. Rev. Lett., vol. 76, no. 4, pp. 664-667, Jan. 1996.
    [20] U. Tisch, E. Finkman and J. Salzman, “The anomalous bandgap bowing in GaAsN”, Appl. Phys. Lett., vol. 81, no. 3, pp. 463-465, July 2002.
    [21] W. Shan, W. Walukiewicz, J. W. Ager III, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson and S. R. Kurtz, “Band Anticrossing in GaInNAs Alloys”, Phys. Rev. Lett., vol. 82, no. 6, pp. 1221-1224, Feb. 1999.
    [22] J. D. Perkins, A. Mascarenhas, Y. Zhang, J. F. Geisz, D. J. Friedman, J. M. Olson and S. R. Kurtz, “Nitrogen-activated transitions, level repulsion, and band gap reduction in GaAs1-xNx with x<0.03”, Phys. Rev. Lett., vol. 82, no. 16, pp. 3312-3315, Apr. 1999.
    [23] W. Walukiewicz, W. Shan, J. W. Ager III, D. R. Chamberlin, E. E. Hailer, J. F. Geisz, D. J. Friedman, J. M. Olson and S. R. Kurtz, in Proceeding of the 195th Electrochemical Society Meeting, Seattle, WA (The Electrochemical Soc. Inc., Pennington, NJ, 1999), vol. 99-11, pp. 190.
    [24] A. Lindsay and E. P. O’Reilly, “Theory of enhanced bandgap non-parabolicity in GaNxAs1-x and related alloys”, Solid State Commun., vol. 112, no. 8, pp. 443-447, Oct. 1999.
    [25] J. Wu, W. Shan and W. Walukiewicz, “Band anticrossing in highly mismatched III–V semiconductor alloys”, Semicond. Sci. Technol., vol. 17, no. 8, pp. 860-869, Aug. 2002.
    [26] W. Shan, W. Walukiewicz, J. W. Ager, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson and S. R. Kurtz, “Effect of nitrogen on the band structure of GaInNAs alloys”, J. Appl. Phys., vol. 86, no. 4, pp. 2349-2351, Aug. 1999.
    [27] K. Uesugi, N. Morooka and I. Suemune, “Reexamination of N composition dependence of coherently grown GaNAs band gap energy with high-resolution x-ray diffraction mapping measurements”, Appl. Phys. Lett., vol. 74, no. 9, pp. 1254-1256, Mar. 1999.
    [28] P. N. Hai, W. M. Chen, I. A. Buyanova, H. P. Xin and C. W. Tu, “Direct determination of electron effective mass in GaNAs/GaAs quantum wells”, Appl. Phys. Lett., vol. 77, no. 12, pp. 1843-1845, Sep. 2000.
    [29] C. Skierbiszewski, P. Perlin, P. Wisniewski, T. Suski, J. F. Geisz, K. Hingerl, W. Jantsch, D. E. Mars and W. Walukiewicz, “Band structure and optical properties of InyGa1-yAs1-xNx alloys”, Phys. Rev. B, vol. 65, no. 3, pp. 035207, Dec. 2001.
    [30] C. Skierbiszewski, “Experimental studies of the conduction-band structure of GaInNAs alloys”, Semicond. Sci. Technol., vol. 17, no. 8, pp. 803-814, July 2002.
    [31] C. Skierbiszewski, P. Perlin, P. Wisniewski, T. Suski, W. Walukiewicz, W. Shan, J. W. Ager, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson and S. R. Kurtz, “Effect of nitrogen-induced modification of the conduction band structure on electron transport in GaAsN alloys”, Phys. Stat. Sol. (b), vol. 216, no. 1, pp. 135-139, Nov. 1999.
    [32] L. G. Ferreira, S.-H. Wei and A. Zunger, “First-principles calculation of alloy phase diagrams: The renormalized-interaction approach”, Phys. Rev. B, vol. 40, no. 5, pp. 3197-3231, Aug. 1989.
    [33] S. G. Spruytte, M. C. Larson, W. Wampler, C. W. Coldren, H. E. Petersen and J. S. Harris, “Nitrogen incorporation in group III–nitride–arsenide materials grown by elemental source molecular beam epitaxy”, J. Cryst. Growth, vol. 227-228, pp. 506-515, July 2001.
    [34] S. B. Zhang and S.-H. Wei, “Nitrogen solubility and induced defect complexes in epitaxial GaAs:N”, Phys. Rev. Lett., vol. 86, no. 9, pp. 1789-1792, Feb. 2001.
    [35] R. T. Lee and G. B. Stringfellow, “Pyrolysis of 1,1 dimethylhydrazine for OMVPE growth”, J. Electron. Mater., vol. 28, no. 8, pp. 963-969, Aug. 1999.
    [36] I. H. Ho and G. B. Stringfellow, “Incomplete solubility in nitride alloys”, Mater. Res. Soc. Symp. Proc., vol. 449, pp. 871-880, 1997.
    [37] S. G. Spruytte, C. W. Coldren, J. S. Harris, W. Wampler, P. Krispin, K. Ploog and M. C. Larson, “Incorporation of nitrogen in nitride-arsenides: Origin of improved luminescence efficiency after anneal”, J. Appl. Phys., vol. 89, no. 8, pp. 4401-4406, Apr. 2001.
    [38] M. Kawaguchi, T. Miyamoto, E. Gouardes, T. Kondo, F. Koyama and K. Iga, “Photoluminescence dependence on heterointerface for metalorganic chemical vapor deposition grown GaInNAs/GaAs quantum wells”, Appl. Phys. Lett., vol. 80, no. 6, pp. 962-964, Feb. 2002.
    [39] E. Gouardes, F. Alexandre, O. Gauthier-Lafaye, A. Vuong-Becaert, V. Colson and B. Thédrez, “Studies of MOVPE growth conditions for the improvement of GaInAsN on GaAs substrates for 1.3 μm laser emission”, J. Cryst. Growth, vol. 248, pp. 446-450, Feb. 2003.
    [40] K. Volz, D. Lackner, I. Németh, B. Kunert, W. Stolz, C. Baur, F. Dimroth and A. W. Bett, “Optimization of annealing conditions of (GaIn)(NAs) for solar cell applications”, J. Cryst. Growth, vol. 310, no. 7-9, pp. 2222-2228, Apr. 2008.
    [41] American Society for Testing and Materials (ASTM), “ASTM G173-03 Standard Tables for Reference Solar Spectral Irradiances”, 1992.
    [42] S. M. Sze and Kwok K. Ng, “Physics of Semiconductor Devices”, 3rd Edition, John Wiley & Sons, Inc. Publication, USA, Chap. 13, pp. 719-736, 2007.
    [43] Jenny Nelson, “The Physics of Solar Cells”, Imperial College Press, UK, 2003.

    Bibliography-Chapter 4
    [1] I. H. Ho and G. B. Stringfellow, “Incomplete solubility in nitride alloys”, Mater. Res. Soc. Symp. Proc., vol. 449, p. 871-880, 1997.
    [2] S. Kurtz, R. Reedy, G. D. Barber, J. F. Geisz, D. J. Friedman, W. E. McMahon and J. M. Olson, “Incorporation of nitrogen into GaAsN grown by MOCVD using different precursors”, J. Cryst. Growth, vol. 234, no. 2-3, pp. 318-322, Jan. 2002.
    [3] U. W. Pohl, C. Möller, K. Knorr, W. Richter, J. Gottfriedsen, H. Schumann, K. Rademann and A. Fielicke, “Tertiarybutylhydrazine: a new precursor for the MOVPE of Group III-nitrides”, Mater. Sci. Eng. B, vol. 59, no. 1-3, pp. 20-23, May 1999.
    [4] A. Ougazzaden, Y. L. Bellego, E. V. K. Rao, M. Juhel, L. Leprince and G. Patriarche, “Metal organic vapor phase epitaxy growth of GaAsN on GaAs using dimethylhydrazine and tertiarybutylarsine”, Appl. Phys. Lett., vol. 70, no. 21, pp. 2861-2863, May 1997.
    [5] Z. Pan, T. Miyamoto, D. Schlenker, S. Sato, F. Koyama and K. Iga, “Low temperature growth of GaInNAs/GaAs quantum wells by metalorganic chemical vapor deposition using tertiarybutylarsine”, J. Appl. Phys., vol. 84, no. 11, pp. 6409-6411, Dec. 1998.
    [6] S. Kurtz, R. Reedy, B. Keyes, G. D. Barber, J. F. Geisz, D. J. Friedman, W. E. McMahon and J. M. Olson, “Evaluation of NF3 versus dimethylhydrazine as N sources for GaAsN”, J. Cryst. Growth, vol. 234, no. 2-3, pp. 323-326, Jan. 2002.
    [7] A. Moto, M. Takahashi and S. Takagishi, “Hydrogen and carbon incorporation in GaInNAs”, J. Cryst. Growth, vol. 221, no. 1-4, pp. 485-490, Dec. 2000.
    [8] M. E. Heimbuch, A. L. Holmes, C. M. Reaves, M. P. Mack, S. P. Denbaars and L. A. Coldren, “Tertiarybutylarsine and tertiarybutylphosphine for the MOCVD growth of low threshold 1.55 μm InxGa1-xAs/InP quantum-well lasers”, J. Electron. Mater., vol. 23, no. 2, pp. 87-91, Feb. 1994.
    [9] K. Uesugi and I. Suemune, “Metalorganic molecular beam epitaxy of GaNAs alloys on (0 0 1) GaAs”, J. Cryst. Growth, vol. 189-190, pp. 490-495, June 1998.
    [10] E. Bourret-Courchesne, Q. Ye, D. W. Peters, J. Arnold, M. Ahmed, S. J. C. Irvine, R. Kanjolia, L. M. Smith and S. A. Rushworth, “Pyrolysis of dimethylhydrazine and its co-pyrolysis with triethylgallium”, J. Cryst. Growth, vol. 217, no. 1-2, pp. 47-54, July 2000.
    [11] R. T. Lee and G. B. Stringfellow, “Pyrolysis of 1,1 dimethylhydrazine for OMVPE growth”, J. Electron. Mater., vol. 28, no. 8, pp. 963-969, Aug. 1999.
    [12] C. Plass, H. Heinecke, O. Kayser, H. Lüth and P. Balk, “A comparative study of Ga(CH3)3, Ga(C2H5)3 and Ga(C4H9)3 in the low pressure MOCVD of GaAs”, J. Cryst. Growth, vol. 88, no. 4, pp. 455-464, May 1988.
    [13] J. F. Geisz, D. J. Friedman, J. M. Olson, S. R. Kurtz and B. M. Keyes, “Photocurrent of 1 eV GaInNAs lattice-matched to GaAs”, J. Cryst. Growth, vol. 195, no. 1-4, pp. 401-408, Dec. 1998.
    [14] Y. Qiu, C. Jin, S. Francoeur, S. A. Nikishin and H. Temkin, “Metalorganic molecular beam epitaxy of GaAsN with dimethylhydrazine”, Appl. Phys. Lett., vol. 72, no. 16, pp. 1999-2001, Apr. 1998.
    [15] C. Jin, S. A. Nikishin, V. I. Kuchinskii, H. Temkin and M. Holtz, “Metalorganic molecular beam epitaxy of (In)GaAsN with dimethylhydrazine”, J. Appl. Phys., vol. 91, no. 1, pp. 56-64, Jan. 2002.
    [16] A. Yu. Egorov, D. Bernklau, B. Borchert, S. Illek, D. Livshits, A. Rucki, M. Schuster, A. Kaschner, A. Hoffmann, Gh. Dumitras, M. C. Amann and H. Riechert, “Growth of high quality InGaAsN heterostructures and their laser application”, J. Cryst. Growth, vol. 227-228, pp. 545-552, July 2001.

    Bibliography-Chapter 5
    [1] Jenny Nelson, “The Physics of Solar Cells”, Imperial College Press, UK, 2003.
    [2] T. F. Kuech, E. Veuhoff and B. S. Meyerson, “Silicon doping of GaAs and AlxGa1-xAs using disilane in metalorganic chemical vapor deposition”, J. Cryst. Growth, vol. 68, no. 1, pp. 48-53, Sep. 1984.
    [3] M. Shimazu, K. Kamon, K. Kimura, M. Mashita, M. Mihara and M. Ishii, “Silicon doping using disilane in low-pressure OMVPE of GaAs”, J. Cryst. Growth, vol. 83, no. 3, pp. 327-333, June 1987.
    [4] P. R. Hageman, M. H. J. M. de Croon, X. Tang and L. J. Giling, “Pressure and temperature dependence of Zn incorporation in metalorganic chemical vapour deposition grown GaAs and AlGaAs using diethylzinc as precursor”, J. Cryst. Growth, vol. 129, no. 1-2, pp. 281-288, Mar. 1993.
    [5] Donald A. Neamen, “Semiconductor Physics and Devices: Basic Principles”, 3rd Edition, McGraw Hill Higher Education, 2002.
    [6] S. M. Sze and Kwok K. Ng, “Physics of Semiconductor Devices”, 3rd Edition, John Wiley & Sons, Inc. Publication, USA, 2007.
    [7] H. Saito, T. Makimoto and N. Kobayashi, “MOVPE growth of strained InGaAsN/GaAs quantum wells”, J. Cryst. Growth, vol. 195, no. 1-4, pp. 416-420, Dec. 1998.
    [8] S. G. Spruytte, C. W. Coldren, J. S. Harris, W. Wampler, P. Krispin, K. Ploog and M. C. Larson, “Incorporation of nitrogen in nitride-arsenides: Origin of improved luminescence efficiency after anneal”, J. Appl. Phys., vol. 89, no. 8, pp. 4401-4406, Apr. 2001.
    [9] M. Kawaguchi, T. Miyamoto, E. Gouardes, T. Kondo, F. Koyama and K. Iga, “Photoluminescence dependence on heterointerface for metalorganic chemical vapor deposition grown GaInNAs/GaAs quantum wells”, Appl. Phys. Lett., vol. 80, no. 6, pp. 962-964, Feb. 2002.
    [10] I. A. Buyanova, W. M. Chen, B. Monemar, H. P. Xin and C. W. Tu, “Photoluminescence characterization of GaNAs/GaAs structures grown by molecular beam epitaxy”, Mater. Sci. Eng. B, vol. 75, no. 2-3, pp. 166-169, June 2000.
    [11] E. Gouardes, F. Alexandre, O. Gauthier-Lafaye, A. Vuong-Becaert, V. Colson and B. Thédrez, “Studies of MOVPE growth conditions for the improvement of GaInAsN on GaAs substrates for 1.3 μm laser emission”, J. Cryst. Growth, vol. 248, pp. 446-450, Feb. 2003.
    [12] R. Bhat, C. Caneau, L. Salamanca-Riba, W. Bi and C. Tu, “Growth of GaAsN/GaAs, GaInAsN/GaAs and GaInAsN/GaAs quantum wells by low-pressure organometallic chemical vapor deposition”, J. Cryst. Growth, vol. 195, no. 1-4, pp. 427-437, Dec. 1998.
    [13] D. J. Friedman, J. F. Geisz, S. R. Kurtz and J. M. Olson, “1-eV solar cells with GaInNAs active layer”, J. Cryst. Growth, vol. 195, no. 1-4, pp. 409-415, Dec. 1998.
    [14] A. Polimeni, G. Baldassarri H. v., H. M. Bissiri, M. Capizzi, M. Fischer, M. Reinhardt and A. Forchel, “Effect of hydrogen on the electronic properties of InxGa1-xAs1-yNy/GaAs quantum wells”, Phys. Rev. B, vol. 63, no. 20, pp. 201304(R), May 2001.
    [15] N. Q. Thinh, I. A. Buyanova, P. N. Hai, W. M. Chen, H. P. Xin and C. W. Tu, “Signature of an intrinsic point defect in GaNxAs1-x”, Phys. Rev. B, vol. 63, no. 3, pp. 033203, Jan. 2001.
    [16] S. G. Spruytte, C. W. Coldren, J. S. Harris, W. Wampler, P. Krispin, K. Ploog and M. C. Larson, “Incorporation of nitrogen in nitride-arsenides: Origin of improved luminescence efficiency after anneal”, J. Appl. Phys., vol. 89, no. 8, pp. 4401-4406, Apr. 2001.
    [17] W. Li, M. Pessa, T. Ahlgren and J. Decker, “Origin of improved luminescence efficiency after annealing of Ga(In)NAs materials grown by molecular-beam epitaxy”, Appl. Phys. Lett., vol. 79, no. 8, pp. 1094-1096, Aug. 2001.
    [18] N. Q. Thinh, I. A. Buyanova, W. M. Chen, H. P. Xin and C. W. Tu, “Formation of nonradiative defects in molecular beam epitaxial GaNxAs1-x studied by optically detected magnetic resonance”, Appl. Phys. Lett., vol. 79, no. 19, pp. 2089-2091, Nov. 2001.
    [19] T. Ahlgren, E. Vainonen-Ahlgren, J. Likonen, W. Li and M. Pessa, “Concentration of interstitial and substitutional nitrogen in GaNxAs1-x”, Appl. Phys. Lett., vol. 80, no. 13, pp. 2314-2316, Apr. 2002.
    [20] L. H. Li, Z. Pan, W. Zhang, Y. W. Lin, Z. Q. Zhou and R. H. Wu, “Effects of rapid thermal annealing on the optical properties of GaNxAs1-x/GaAs single quantum well structure grown by molecular beam epitaxy”, J. Appl. Phys., vol. 87, no. 1, pp. 245-248, Jan. 2000.
    [21] I. A. Buyanova, G. Pozina, P. N. Hai, N. Q. Thinh, J. P. Bergman, W. M. Chen, H. P. Xin and C. W. Tu, “Mechanism for rapid thermal annealing improvements in undoped GaNxAs1-x/GaAs structures grown by molecular beam epitaxy”, Appl. Phys. Lett., vol. 77, no. 15, pp. 2325-2327, Oct. 2000.
    [22] Q. D. Zhuang, A. Krier and C. R. Stanley, “Strain enhancement during annealing of GaAsN alloys”, J. Appl. Phys., vol. 101, no. 10, pp. 103536, May 2007.
    [23] E. V. K. Rao, A. Ougazzaden, Y. L. Bellego and M. Juhel, “Optical properties of low band gap GaAs(1-x)Nx layers: Influence of post-growth treatments”, Appl. Phys. Lett., vol. 72, no. 12, pp. 1409-1411, Mar. 2001.
    [24] H. P. Xin, K. L. Kavanagh, M. Kondow and C. W. Tu, “Effects of rapid thermal annealing on GaInNAs/GaAs multiple quantum wells”, J. Cryst. Growth, vol. 201-202, pp. 419-422, May 1999.
    [25] S. G. Spruytte, M. C. Larson, W. Wampler, C. W. Coldren, H. E. Petersen and J. S. Harris, “Nitrogen incorporation in group III-nitride-arsenide materials grown by elemental source molecular beam epitaxy”, J. Cryst. Growth, vol. 227-228, pp. 506-515, July 2001.

    Bibliography-Chapter 6
    [1] E. V. K. Rao, A. Ougazzaden, Y. L. Bellego and M. Juhel, “Optical properties of low band gap GaAs(1-x)Nx layers: Influence of post-growth treatments”, Appl. Phys. Lett., vol. 72, no. 12, pp. 1409-1411, Mar. 2001.
    [2] S. Kurtz, J. Webb, L. Gedvilas, D. Friedman, J. Geisz, J. Olson, R. King, D. Joslin and N. Karam, “Structural changes during annealing of GaInAsN”, Appl. Phys. Lett., vol. 78, no. 6, pp. 748-750, Feb. 2001.
    [3] J. F. Geisz, D. J. Friedman, J. M. Olson, S. R. Kurtz and B. M. Keyes, “Photocurrent of 1 eV GaInNAs lattice-matched to GaAs”, J. Cryst. Growth, vol. 195, no. 1-4, pp. 401-408, Dec. 1998.
    [4] S. Kurtz, J. F. Geisz, D. J. Friedman, W. K. Metzger, R. R. King and N. H. Karam, “Annealing-induced-type conversion of GaInNAs”, J. Appl. Phys., vol. 95, no. 5, pp. 2505-2508, Mar. 2004.
    [5] R. Kudrawiec, G. Sęk, J. Misiewicz, D. Gollub and A. Forchel, “Explanation of annealing-induced blueshift of the optical transitions in GaInAsN/GaAs quantum wells”, Appl. Phys. Lett., vol. 83, no. 14, pp. 2772-2774, Oct. 2003.
    [6] C. S. Peng, H. F. Liu, J. Konttinen and M. Pessa, “Mechanism of photoluminescence blue shift in InGaAsN/GaAs quantum wells during annealing”, J. Cryst. Growth, vol. 278, no. 1-4, pp. 259-263, May 2005.
    [7] W. Ha, V. Gambin, S. Bank, M. Wistey, H. Yuen, S. Kim and J. S. Harris Jr., “Long-wavelength GaInNAs(Sb) lasers on GaAs”, IEEE J. Quantum Electron., vol. 38, no. 9, pp. 1260-1267, Sep. 2002.
    [8] W. C. Chen, Y. K. Su, R. W. Chuang and S. H. Hsu, “Investigation of the optical properties of InGaAs(N):(Sb) quantum wells grown by metal organic vapor phase epitaxy”, J. Vac. Sci. Technol. A, vol. 24, no. 3, pp. 591-594, May 2006.
    [9] S. R. Bank, M. A. Wistey, L. L. Goddard, H. B. Yuen, V. Lordi and J. S. Harris Jr., “Low-threshold continuous-wave 1.5-μm GaInNAsSb lasers grown on GaAs”, IEEE J. Quantum Electron., vol. 40, no. 6, pp. 656-664, June 2004.
    [10] D. B. Jackrel, S. R. Bank, H. B. Yuen, M. A. Wistey, J. S. Harris, A. J. Ptak, S. W. Johnston, D. J. Friedman and S. R. Kurtz, “Dilute nitride GaInNAs and GaInNAsSb solar cells by molecular beam epitaxy”, J. Appl. Phys., vol. 101, no. 11, pp. 114916, Jun. 2007.

    下載圖示 校內:2013-07-20公開
    校外:2015-07-20公開
    QR CODE