簡易檢索 / 詳目顯示

研究生: 林育楷
Lin, Yu-Kai
論文名稱: 含PLGA微粒之玻尿酸微針作為雙重藥物之經皮傳輸系統,應用於骨質疏鬆症之長期治療
Hyaluronic acid microneedles containing PLGA microparticles as a dual-drug transdermal delivery system for long-term treatment of osteoporosis.
指導教授: 陳美瑾
Chen, Mei-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 76
中文關鍵詞: 經皮雙重藥物緩釋鑲嵌式微針玻尿酸骨質疏鬆症微米粒子
外文關鍵詞: dual-drug transdermal sustained delivery, embeddable microneedles, hyaluronic acid, osteoporosis, microparticles.
相關次數: 點閱:101下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文開發一包有PLGA微粒之鑲嵌式玻尿酸微針系統,可進行雙重骨鬆藥物之經皮傳輸,應用於骨質疏鬆症之長期治療。微針主體包覆親水性骨鬆藥物(alendronate sodium, ALN)以及PLGA微粒,PLGA微粒則包覆疏水性骨鬆藥物(estradiol, E2),後端再結合快溶型玻尿酸組成的支撐軸,支撐軸能提供額外的長度以及足夠的機械強度,以抵抗皮膚之變形,使得微針完全鑲嵌,支撐軸快速溶解於皮膚中,持續緩釋ALN及E2。本研究製備的PLGA微米粒子具有高包覆效率(99.49 ± 1.5%)、高產率(99.68 ± 0.41%)以及粒徑分佈均一(1-20 μm)且無聚集的現象;由血中雌二醇濃度結果證實,本研究製備包有雌激素之PLGA微粒可於體內緩釋雌激素至少28天;微針能鑲嵌於皮膚中,深度約700 ~ 800 μm;將微針包覆model drug(coumarin、nile blue)後刺入老鼠背部皮膚,持續釋放親水染劑(Nile blue)長達14天,疏水染劑(coumarin)長達28天;在治療骨鬆方面,共分為5組,分別A(non-OVX)、B(OVX-PBS)、C(OVX-ALN)、D(OVX-MPs) and E(OVX-MNs).由生化標誌(biomarker) : CTX-I濃度方面可看出E組(2.11 ± 0.13 ng/ml)確實比C組(2.32 ± 0.12 ng/ml)、D組(2.77 ± 0.13 ng/ml)下降許多(P < 0.01);微電腦斷層掃描儀(Micro-CT):骨密度(bone mineral density)方面可看出,E組(0.404 ± 0.026)確實比C組(0.302 ± 0.024)、D組(0.224 ± 0.026)上升許多(P < 0.01),故由上述生化標誌(biomarker)、微電腦斷層掃描儀(Micro-CT)證實,微針組(協同治療)刺激成骨細胞及對破骨細胞的雙重抑制效果,使得微針組確實比單一給藥組(C、D組)具有更好的療效。本研究開發之包覆微米粒子之玻尿酸微針,確實可鑲嵌於皮膚內,進行長效且雙效型地釋放ALN及E2,對骨質疏鬆症做更有效的治療,並期許成為臨床上治療骨質疏鬆症的選擇之一。

    This study develops an embeddable hyaluronic acid microneedle (HA MN) system containing PLGA microparticles (MPs) as a dual-drug transdermal delivery system for long-term treatment of osteoporosis. Alendronate sodium (ALN) and estradiol (E2)-loaded PLGA MPs are loaded in the HA MN that are connected with a dissolving HA supporting array. When inserted into the skin, the supporting array can provide an extended length to counteract skin deformation for complete insertion of MN and then quickly dissolve in the skin. The MN can be embedded within the skin for sustained transdermal delivery of ALN and E2. The prepared PLGA MPs has high drug entrapment efficiency of 99.49 ± 1.5%, high yield of 99.68 ± 0.41%, uniform particle size distribution (1-20 μm) and no aggregation between MPs. Serum E2 profiles show that the PLGA MNs allows prolonged release of E2 for at least 28 days. The MNs can pierce into porcine cadaver skin and rat skin at a depth of 700 ~ 800 μm. After being inserted into rat skin, the embedded MNs allowed sustained release of hydrophilic (Nile blue) and hydrophobic (coumarin) model drugs for up to 14 and 28 days, respectively. In anti-osteoporosis therapy test in ovariectomized (OVX) rat, we have five groups, namely A(non-OVX)、B(OVX-PBS)、C(OVX-ALN)、D(OVX-MPs) and E(OVX-MNs). Biomarker study shows the CCTX-I in E group (2.11 ± 0.13 ng/ml) was lower than C (2.32 ± 0.12 ng/ml)、D (2.77 ± 0.13 ng/ml) group (P < 0.01); In Micro-CT study, bone mineral density (BMD) in E group (0.404 ± 0.026) was higher than C (0.302 ± 0.024)、D (0.224 ± 0.026) group (P < 0.01). These results demonstrated that the E group (dual-drug therapy) has a better therapy than the single drug-administrated group (C,D group) by stimulating osteoblasts and dual inhibition effect on osteoclasts. To sum up, the MNs loaded with PLGA-MPs have the ability to sustain delivery of dual-drug in the skin for long-term and better therapy of osteoporosis and we hope our MNs system can become an alternative way for long-term treatment of osteoporosis on clinical.

    摘要 I Abstract XVI 致謝 XVIII 目錄 XIX 表目錄 XXI 圖目錄 XXII 第一章 緒論 1 1.1骨頭基本介紹與結構 1 1.2骨細胞生理機轉 2 1.2.1成骨細胞(Osteoblast) 2 1.2.2骨細胞(osteocyte) 3 1.2.3破骨細胞(osteoclast) 4 1.3骨骼的汰舊換新 5 1.4骨質疏鬆症 6 1.4.1骨質疏鬆症分類與成因 6 1.4.2臨床上治療骨鬆之方式 8 1.5Alendronate sodium、estradiol作用機制 9 1.5.1Alendronate sodium(ALN) 9 1.5.2Estradiol(E2) 10 1.6臨床治療骨質疏鬆檢測項目[17-26] 11 1.6.1骨密度與骨小樑量測 11 1.6.2 成骨/破骨細胞代謝生化指標之測定 11 1.7材料簡介 13 1.7.1玻尿酸 13 1.7.2乳酸及乙醇酸共聚物(PLGA) 14 1.8研究動機與目的 16 1.9研究架構 18 第二章 實驗材料與方法 19 2.1實驗藥品、耗材與動物 19 2.2儀器設備 21 2.3 PLGA微米粒子 22 2.3.1微米粒子製備 22 2.3.2微粒外觀、粒徑分析 24 2.3.3粒子參數分析(entrapment efficiency、PLGA recovery、loading content) 24 2.4包覆model drug(Coumarin、Nile blue)之鑲嵌型玻尿酸微針貼片 25 2.4.1包覆model drug之鑲嵌型玻尿酸微針貼片製備 25 2.4.2穿刺能力測試 27 2.4.3微針降解分析 28 2.4.4微粒深度分布以及model drug擴散情形 29 2.5患有骨質疏鬆症大鼠療效測試 29 2.5.1實驗設計 29 2.5.2包覆estradiol、alendronate sodium鑲嵌型玻尿酸微針貼片製備 29 2.5.3 Estradiol、alendronate sodium定量分析 30 2.5.4體外藥物釋放 31 2.5.5血中雌二醇濃度 32 2.5.6生化標誌(biomarker)測定[17~26] 32 2.5.7微電腦斷層掃描儀[18、23] 32 第三章 結果與討論 34 3.1 PLGA微米粒子 34 3.1.1微粒外觀、粒徑分佈測試 34 3.1.2粒子參數分析(entrapment efficiency、PLGA recovery、loading content) 35 3.2包覆model drug(Coumarin、Nile blue)之鑲嵌型玻尿酸微針貼片 37 3.2.1 包覆model drug之鑲嵌型玻尿酸微針貼片 37 3.2.2穿刺能力測試 38 3.2.3 微針降解分析 39 3.2.4微粒深度分布以及model drug擴散情形 42 3.3患有骨質疏鬆症大鼠療效測試 50 3.3.1包覆estradiol、alendronate sodium之微針貼片定量 50 3.3.2體外藥物釋放 51 3.3.3血中雌二醇濃度 52 3.3.4生化標誌(biomarker)測定 54 3.3.5微電腦斷層掃描儀 57 第四章 結論 67 第五章 未來展望 69 參考文獻 70 表目錄 表3-1 微米粒子之雌二醇包覆效率 36 表3-2 PLGA回收率 37 表3-3 微米粒子loading content 37 圖目錄 圖1-1 長骨解剖構造圖[1] 2 圖1-2 成骨細胞成熟分化圖[51] 3 圖1-3 骨細胞(osteocyte)示意圖[15] 4 圖1-4 破骨細胞的分化與成熟[54] 5 圖1-5 骨重塑示意圖[39] 6 圖1-6 骨小梁組織放大圖(左:正常骨小梁 右:骨質疏鬆後骨小梁)[42] 6 圖1-7 第一型骨鬆致病機轉[5] 7 圖1-8 第二型骨鬆致病機轉[5] 8 圖1-9 ALN吸附於骨骼表面[57] 10 圖1-10 ALN於破骨細胞內之作用機制[58] 10 圖1-11 E2對破骨細胞之作用機制[59](藍色框框:對破骨細胞有抑制作用之細胞因子、橘色框框:對破骨細胞有促進作用之細胞因子) 11 圖1-12 破骨細胞骨吸收時釋放TRAP[35] 12 圖1-13 玻尿酸的一級結構[36] 13 圖1-14 PLA、PGA、PLGA單體結構[44] 15 圖1-15 鑲嵌型玻尿酸微針貼片於經皮作用機制示意圖 17 圖1-16 實驗架構 18 圖2-1 PLGA微米粒子製備流程圖 23 圖2-2 不鏽鋼主結構:(a)金字塔微針;(b)presser 25 圖2-3 鑲嵌型微針貼片製備流程圖 27 圖2-4 體外豬皮穿刺實驗示意圖 28 圖2-5 活體鼠皮穿刺實驗示意圖 28 圖2-6 實驗時程表 29 圖2-7 接針示意圖 30 圖2-8 Alendronate sodium與OPA反應原理示意圖[49] 31 圖2-9 體外藥物釋放(Franz cell)示意圖 32 圖2-10 脛骨之微電腦斷層造影示意圖[23] 33 圖3-1 PLGA微粒之SEM影像圖 (a)單顆微粒示意圖 (b)多顆微粒示意圖 34 圖3-2 PLGA微粒之倒立式螢光顯微鏡影像圖 (a)可見光 (b) Coumarin螢光 34 圖3-3 PLGA微粒粒徑分佈圖 35 圖3-4 E2於DMSO之檢量線(λexc = 281nm、λemi = 315 nm) 36 圖3-5 (a)包覆model drug(Coumarin、Nile blue)之玻尿酸微針 (b)包覆model drug之玻尿酸微針全景 37 圖3-6 包覆model drug玻尿酸微針之多光子共軛焦顯微影像圖 Coumarin(綠色)包在PLGA微粒中;Nile blue(藍色)包在玻尿酸微針主體中 38 圖3-7 體外豬皮穿刺結果 (a)穿刺後之微針陣列 (b)穿刺後之組織切片 39 圖3-8 活體鼠皮穿刺結果 (a)穿刺後之微針陣列 (b)穿刺後之組織切片 39 圖3-9 正常老鼠經Alcian blue染色後,內源性玻尿酸分布情況(說明:Alcian blue為藍色) 40 圖3-10 大鼠皮膚於不同時間點之組織切片染色圖(說明:Alcian blue為藍色) 41 圖3-11 0天之多光子共軛焦顯微影像系統拍攝結果:(a)不同深度之截面圖(b-d)3D重組圖:包覆Coumarin 之微米粒子(綠色);Nile blue(藍色) 43 圖3-12 1天之多光子共軛焦顯微影像系統拍攝結果:(a)不同深度之截面圖(b-d)3D重組圖:包覆Coumarin 之微米粒子(綠色);Nile blue(藍色) 44 圖3-13 3天之多光子共軛焦顯微影像系統拍攝結果:(a)不同深度之截面圖(b-d)3D重組圖:包覆Coumarin 之微米粒子(綠色);Nile blue(藍色) 45 圖3-14 7天之多光子共軛焦顯微影像系統拍攝結果:(a)不同深度之截面圖(b-d)3D重組圖:包覆Coumarin 之微米粒子(綠色);Nile blue(藍色) 46 圖3-15 14天之多光子共軛焦顯微影像系統拍攝結果:(a)不同深度之截面圖(b-d)3D重組圖:包覆Coumarin 之微米粒子(綠色);Nile blue(藍色) 47 圖3-16 21天之多光子共軛焦顯微影像系統拍攝結果:(a)不同深度之截面圖(b-d)3D重組圖:包覆Coumarin 之微米粒子(綠色);Nile blue(藍色) 48 圖3-17 28天之多光子共軛焦顯微影像系統拍攝結果:(a)不同深度之截面圖(b-d)3D重組圖:包覆Coumarin 之微米粒子(綠色);Nile blue(藍色) 49 圖3-18 包覆estradiol、alendronate sodium之微針貼片顯微影像圖 50 圖3-19 Alendronate sodium定量檢量線(λabs = 333 nm) 50 圖3-20 ALN-OPA吸收掃描 51 圖3-21 E2 in PBS螢光掃描(λexc = 281nm) 52 圖3-22 血中雌二醇濃度曲線(n=6) 53 圖3-23 雌二醇檢量線(n=2) 54 圖3-24 血中生化標誌(biomarker)濃度測定 56 圖3-25 檢量線 (a) CTX-I(骨吸收指標) (b) osteocalcin(骨生成指標) (n=2) 56 圖3-26 脛骨(tibia)之橫向斷面(transverse plane)分析示意圖 58 圖3-27 脛骨(tibia)之coronal plane分析示意圖 58 圖3-28 脛骨(tibia)之骨小樑微結構立體圖 59 圖3-29 脛骨骨小樑骨參數數值比較-(1)(n=6) 63 圖3-30 脛骨骨小樑骨參數數值比較-(2)(n=6) 65 圖3-31 脛骨骨小樑骨密度數值比較(n=6) 66

    1.Elaine N. Maried et al. Human anatomy. 4th edition. 2005.
    2.Kanis JA. Osteoporosis. Blackwell Science Ltd. Oxford. 1994.
    3.http://scitechvista.most.gov.tw/zh-tw/articles/c/0/1/10/1/1134.htm
    4.張昱婷. 探討物理性刺激對於骨質疏鬆症之影響. 國立成功大學醫學工程研究所碩士論文. 2009.
    5.張瑜珊. 探討磁場刺激應用於大鼠雙側卵巢切除後骨質疏鬆之影響. 國立成功大學醫學工程研究所碩士論文. 2011.
    6.國立屏東商業技術學院學生事務處衛生保健組.
    7.李効松. 雙磷酸鹽-葡萄聚醣-四氧化三鐵磁性奈米粒子於生醫應用之特性研究. 中原大學奈米科技碩士學位學程碩士學位論文. 2011.
    8.Khosla S, Oursler MJ, Monroe DG. Estrogen and the skeleton. Trends Endocrinol Metab. 2012;23(11):576-81.
    9.Katsumi H, Liu S, Tanaka Y, Hitomi K, Hayashi R, Hirai Y, Kusamori K, Quan YS, Kamiyama F, Sakane T, Yamamoto A. Development of a novel self-dissolving microneedle array of alendronate, a nitrogen-containing bisphosphonate: evaluation of transdermal absorption, safety, and pharmacological effects after application in rats. J Pharm Sci. 2012;101(9):3230-8.
    10.Mittal G, Sahana DK, Bhardwaj V, Ravi Kumar MN. Estradiol loaded PLGA nanoparticles for oral administration: Effect of polymer molecular weight and copolymer composition on release behavior in vitro and in vivo. J Control Release. 2007;119(1):77-85.
    11.Jande SS, Bélanger LF. The Life cycle of the osteocyte. Clin Orthop Relat Res. 1973;(94):281-305.
    12.Cosman F, Lane NE, Bolognese MA, Zanchetta JR, Garcia-Hernandez PA, Sees K, Matriano JA, Gaumer K, Daddona PE. Effect of Transdermal Teriparatide Administration on Bone Mineral Density in Postmenopausal Women. J Clin Endocrinol Metab. 2010;95(1):151-8.
    13.Yabe H, Hanaoka H. Investigation of the origin of the osteoclast by use of transplantation on chick chorioallantoic membrane. Clin Orthop Relat Res. 1985;(197):255-65.
    14.洪世彥. 脈衝磁場刺激研發及對骨髓間葉幹細胞之骨化效應. 國立成功大學醫學工程研究所碩士論文. 2007.
    15.胡明一等編譯. 人體解剖學. 藝軒圖書出版社. 台灣. 1998.
    16.梅約醫學中心. 骨質疏鬆症. 天下生活出版股份有限公司. 2004.
    17.健康食品之骨質保健功效評估方法. http://www.ieatpe.org.tw/upload/00196.pdf.
    18.Method for ex-vivo micro-CT analysis of rat bone (proximal tibia, distal femur). http://umanitoba.ca/faculties/health_sciences/medicine/units/cacs/sam/media/MN003_Bone_microCT_analysis_rat.pdf.
    19.Altman AR, Tseng WJ, de Bakker CM, Huh BK, Chandra A, Qin L, Liu XS. A closer look at the immediate trabecula response to combined parathyroid hormone and alendronate treatment. Bone. 2014;61:149-57.
    20.Campbell GM, Bernhardt R, Scharnweber D, Boyd SK. The bone architecture is enhanced with combined PTH and alendronate treatment compared to monotherapy while maintaining the state of surface mineralization in the OVX rat. Bone. 2011;49(2):225-32.
    21.Chen SY, Yu HT, Kao JP, Yang CC, Chiang SS, Mishchuk DO, Mau JL, Slupsky CM. An NMR Metabolomic Study on the Effect of Alendronate in Ovariectomized Mice. PLOS ONE. 2014;9(9):e106559.
    22.Vijayan V, Khandelwal M, Manglani K, Gupta S, Surolia A. Methionine down-regulates TLR4/MyD88/NF-κB signalling in osteoclast precursors to reduce bone loss during osteoporosis. Br J Pharmacol. 2014;171(1):107-21.
    23.Hatori K, Camargos GV, Chatterjee M, Faot F, Sasaki K, Duyck J, Vandamme K. Single and combined effect of high-frequency loading and bisphosphonate treatment on the bone micro-architecture of ovariectomized rats. Osteoporos Int. 2015;26(1):303-13.
    24.Chen B1, Li Y, Yang X, Xie D. Comparable Effects of Alendronate and Strontium Ranelate on Femur in Ovariectomized Rats. Calcif Tissue Int. 2013;93(5):481-6.
    25.Bae J, Park JW. Preparation of an injectable depot system for long-term delivery of alendronate and evaluation of its anti-osteoporotic effect in an ovariectomized rat model. Int J Pharm. 2015;480(1-2):37-47.
    26.Yano T, Yamada M, Konda T, Shiozaki M, Inoue D. Risedronate improves bone architecture and strength faster than alendronate in ovariectomized rats on a low-calcium diet. J Bone Miner Metab. 2014;32(6):653-9.
    27.Takahashi N, Akatsu T, Udagawa N, Sasaki T, Yamaguchi A, Moseley JM, Martin TJ, Suda T. Osteoblastic cells are involved in osteoblast formation, Endocrinology. 1988;123(5):2600-2.
    28.Sato T, Morita I, Murota S. Involvement of cholesteriol in osteoclast-like cell formation via cellular fusion. Bone. 1998;23(2):135-40.
    29.Sun JS, Chang WS, Hong RC, Hung TY, Lin FH, Liu HC. Alveolar mononuclear cells can develop into multinucleated osteoclasts: an in vitro cell culture model. J Biomed Mater Res. 2000;52(1):142-7.
    30.Tamura T, Takahashi N, Akatsu T, Sasaki T, Udagawa N, Tanaka S, Suda T. New resorption assay with mouse osteoclast-like multinucleated cells formed in vitro. J Bone Miner Res. 1993;8(8):953-60.
    31.Nishikawa M, Akatsu T, Katayama Y, Yasutomo Y, Kado S, Kugal N, Yamamoto M, Nagata N. Biophosphonates act on osteoblastic cells and inhibit osteoclast formation in mouse marrow cultures. Bone. 1996;18(1):9-14.
    32.Bettany JT, Peet NM, Wolowacz RG, Skerry TM, Grabowski PS. Tetracyclines induce apoptosis in osteoclasts. Bone. 2000;27(1):75-80.
    33.Galvin RJ, Bryan P, Horn JW, Rippy MK, Thomas JE. Development and characterization of a porcine model to study osteoclast differentiation and activity. Bone. 1996;19(3):271-9.
    34.Minkin C. Bone acid phosphatase:tartrate-resistant acid phosphatase as a marker of osteoclast function. Calcif Tissue Int. 1982;34(3):285-90.
    35.Lacey DL, Boyle WJ, Simonet WS, Kostenuik PJ, Dougall WC, Sullivan JK, San Martin J, Dansey R. Bench to bedside: elucidation of the OPG–RANK–RANKL pathway and the development of denosumab. Nat Rev Drug Discov. 2012;11(5):401-19.
    36.Hascall, V. C. and Laurent, T. C. Hyaluronan: structure and physical properties. http://www.glycoforum.gr.jp/science/hyaluronan/HA01/HA01.pdf. 1997.
    37.Scott JE, Cummings C, Brass A, Chen Y. Secondary and tertiary structures of hyaluronan in aqueous solution, investigated by rotary shadowing-electron microscopy and computer simulation. Hyaluronan is a very efficient network-forming polymer. Biochem J. 1991;274(3):699-705.
    38.Morimoto K, Yamaguchi H, Iwakura Y, Morisaka K, Ohashi Y, Nakai Y. Effects of viscous hyaluronate-sodium solutions on the nasal absorption of vasopressin and an analogue. Pharm Res. 1991;8(4):471-4.
    39.http://image.shutterstock.com/z/stock-vector-the-bone-remodeling-process involves-the-following-steps-resorption-reversal-formation-333409151.jpg
    40.高維毅. 玻尿酸醱酵中均衡培養基之探討. 國立成功大學醫學工程研究所碩士論. 2006.
    41.Athanasiou KA, Niederauer GG, Agrawal CM. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials. 1996;17(2):93-102.
    42.周永昌教授, 李明慧醫生, 黃敏樺醫生. 淺談骨質疏鬆症. 癌轉譯研究組織. 2011.
    43.Otsuka M, Uenodan H, Matsuda Y, Mogi T, Ohshima H, Makino K. Therapeutic effect of in vivo sustained estradiol release from poly (lactide-co-glycolide) microspheres on bone mineral density of osteoporosis rats. Biomed Mater Eng. 2002;12(2):157-67.
    44.施翔庭. 聚羥基丁酯戊酯(PHBV)/聚乳酸-甘醇酸(PLGA)掺合膜, 表面改質及生物相容性之研究. 大同大學生物工程研究所碩士論文. 2007.
    45.骨質疏鬆檢測套組. http://www.ailin.url.tw/bone.1.htm.
    46.Filip RS, Zagórski J. Age and BMD related differences in biochemical markers of bome metabolism in rural and urban women from Lublin Region, Poland. Ann Agric Environ Med. 2004;11(2):255-9.
    47.Bonde M, Qvist P, Fledelius C, Riis BJ, Christiansen C. Applications of an enzyme irmaunoassay a new rn&rker of bone resorption(Crosslaps): follow-up on hormone replacement thempy and osteoporosis risk assessment. J Clin Endocrinol Metab. 1995;80(3):864-8.
    48.財團法人長庚紀念醫院林口醫學中心檢驗醫學科. 血清骨質特異性鹼性磷酸酶. https://www1.cgmh.org.tw/intr/intr2/c3920/INFOR/L72-398.pdf.
    49.Ezzati Nazhad Dolatabadi J, Hamishehkar H, de la Guardia M, Valizadeh H. A fast and simple spectrofluorometric method for the determination of alendronate sodium in pharmaceuticals. Bioimpacts. 2014;4(1):39-42.
    50.Al Deeb SK, Hamdan II, Al Najjar SM. Spectroscopic and HPLC methods for the determination of alendronate in tablets and urine, Talanta. 2004;64(3):695-702.
    51.https://books.google.com.tw/books?hl=zhTW&lr=&id=blFlkDHffW8C&oi=fnd&pg=PA93&dq=osteoblast+%E4%BD%9C%E8%80%85:stein&ots=LZRQR90zd&sig=0Bz4V7c1wfOqCWalpRWdljol4l8&redir_esc=y#v=onepage&q&f=false.
    52.http://www.alilamedicalimages.org/2013/12/25/bone-remodeling/.
    53.https://en.wikipedia.org/wiki/Bone_cell.
    54.Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423(6937):337-42.
    55.Yan-Yu Chen, Rong-Sen Yang. Bisphosphonates and Treatment of Osteoporosis. Taiwan Geriatr Gerontol. 2011;6:145-160.
    56.Kusamori K, Katsumi H, Abe M, Ueda A, Sakai R, Hayashi R, Hirai Y, Quan YS, Kamiyama F, Sakane T, Yamamoto A. Development of a Novel Transdermal Patch of Alendronate, a Nitrogen-Containing Bisphosphonate, for the Treatment of Osteoporosis. J Bone Miner Res. 2010;25(12):2582-91.
    57.Russell RG, Watts NB, Ebetino FH, Rogers MJ. Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos Int. 2008;19(6):733-59.
    58.Drake MT, Clarke BL, Khosla S. Bisphosphonates: mechanism of action and role in clinical practice. Mayo Clin Proc. 2008;83(9):1032-45.
    59.Riggs BL, Khosla S, Melton LJ. Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev. 2002;23(3):279-302.
    60.Coxon FP, Thompson K, Roelofs AJ, Ebetino FH, Rogers MJ. Visualizing mineral binding and uptake of bisphosphonate by osteoclasts and non-resorbing cells. Bone. 2008;42(5):848-60.
    61.Amin D, Cornell SA, Gustafson SK, Needle SJ, Ullrich JW, Bilder GE, Perrone MH. Bisphosphonates used for the treatment of bone disorders inhibit squalene synthase and cholesterol biosynthesis. J Lipid Res. 1992;33(11):1657-63.
    62.Zhang FL, Casey PJ. Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem. 1996;65:241-69.
    63.Weinstein RS, Roberson PK, Manolagas SC. Giant osteoclast formation and long-term oral bisphosphonate therapy. N Engl J Med. 2009;360(1):53-62.
    64.陳彥宇, 楊榮森. 雙磷酸鹽與骨質疏鬆症之治療. 台灣老年醫學暨老年學雜誌. 2011;6(3):145-160.

    無法下載圖示 校內:2021-12-06公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE