| 研究生: |
張豐勝 Chang, Feng-Sheng |
|---|---|
| 論文名稱: |
Mg-alpha-SiAlON氮氧化物螢光粉之合成製程開發
與螢光效能之研究 Process Development for Synthesis of Mg-alpha-SiAlON Oxynitride Phosphor and on its Phosphor Performance |
| 指導教授: |
鍾賢龍
Chung, Shyan-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 142 |
| 中文關鍵詞: | 螢光粉 、氮氧化物 、燃燒合成法 、SiAlON 、引燃劑 、螢光粉後處理 |
| 外文關鍵詞: | Phosphor, Oxynitride, Combustion synthesis, Igniter, SiAlON, Post-synthesis treatment |
| 相關次數: | 點閱:95 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
白光LED被當作新世代之固態照明設備,其具有高功率、省電、散熱佳、長壽命化、無汙染等之優點,而目前工業上使用之氧化物螢光粉(如YAG:Ce3+)並不符合這些要求,特別是運用於高功率的白光LED之氧化物螢光粉熱穩定性較差,操作溫度上升後易造成光色的改變,高性能螢光粉之開發因而成為白光LED發展上之重要課題。近來文獻研究顯示氮氧化物螢光粉,其具有高發光效率、高化學穩定性、熱穩定性佳、無環境汙染並且可在藍光或紫外光下激發,因而被應用在具有潛能白光LED固態照明中,現今由於氮氧化物螢光粉在合成製程一般是需要高溫、高壓或長時間反應且設備造價昂貴,因而限制了其應用。在過去研究文獻中,極少對於Mg-α-SiAlON 螢光粉之螢光性質研究,因此本論文將引用本實驗室過去建立之合成氮化物陶瓷粉體與Ca-α-SiAlON螢光粉之燃燒合成法,並成功地開發出能夠在低壓下以及在短時間內可大量製造Mg-α-SiAlON 螢光粉之方法。本論文探討反應物的組成、螢光粉後處理如酸洗、熱處理等對產物之影響,最後找出發光強度較佳之條件並與市售作比較,實驗結果發現,改變反應物間的組成與比例,可合成出不同螢光強度及波長之範圍之Mg-α-SiAlON螢光粉體,此螢光粉的激發波長範圍為220~500nm,若利用380nm之紫外光激發此螢光粉可得到一主峰波長位置位於555nm 及發光範圍介於400~650nm 之放射光譜,而螢光粉體後處理程序中發現酸洗與再次燃燒合成皆可以有效提升螢光強度,但並不影響產物之激發、放射光譜與晶相組成,其最佳螢光強度已超越市售螢光粉強度,約為市售1.12倍。
White light-emitting diodes (white LEDs) are considered as next-generation solid-state lighting systems because of their promising advantages such as low power consumption, lower heat generation, high efficiency, high reliability, long lifetime, and the lack of mercury. The presently used oxide phosphors (e.g.,YAG:Ce3+) can not meet the requirements of high efficiency and high thermal stability by the high power white LED applications. It causes the color shift when operation temperature increased. It is thus an important research subject to develop phosphors materials with desirable properties such as high efficiency, high thermal stability, chemical resistance and high brightness. Recently, oxynitride phosphors which has high luminescence intensity, high chemical stability, thermal stability properties under UV or blue light irradiation, have received considerable attention due to their potential applications in solid-state lightings and displays. The literatures didn’t indicated that oxynitride phosphor (Mg-α-SiAlON) had luminescence properties. However, the conditions for producing this kind of oxynitride phosphor by using nowadays synthesis methods are such as high temperature, high pressure, long duration time, and expensive equipments. For the reason the production costs of oxynitride phosphor are too high to limit its applications. In our laboratory had been developed on nitride ceramic materials and oxynitride phosphors (Ca-α-SiAlON) by self-propagating high temperature synthesis (SHS) reactions for this thesis. The Mg-α-SiAlON phosphor was produced in large scale, low pressure, and short duration time. It discussed the effects on the properties of the product including reactant composition ,and post-synthesis treatments. The results showed that the phosphor with different luminescence intensity and wavelength by using different condition and parameters. There was a product which excitation spectrum was covered the range of 220-500nm and a broad emission band in the range of 400-650nm and centered at 555nm was observed upon 380nm excitation. The phosphor increases luminescence intensity by post-synthesis treatment, but it doesn’t have negative effect on the properties of the product including excitation spectrum, emission spectrum and crystalline phase. The luminescence intensity can exceed commercial phosphor and the intensity is 1.12 times compared with commercial phosphor.
1.Salkind, A.J. and P. Israel. Thomas Alva Edison -battery and device innovation in response to application's needs. in 23rd International Power Sources Symposium.
2003.Amsterdam, NETHERLANDS: Elsevier Science B
2.Jacobson, M.Z., Review of solutions to global warming, air pollution, and energy security. Energy & Environmental Science, 2009. 2(2): p. 148-173.
3.E. F. Schubert, “Light-Emitting Diodes”, Cambridge University Press, 2006
4.劉如熹與紀喨勝(民92),紫外光發光二極體用螢光分介紹。台北市:全華科技圖書股份有限公司。
5.Kitai, A., Luminescent Materials and Applications. Wiley Series in Materials for Electronic and Optoelectronic Applications, ed. P. Capper, S. Kasap, and A.Willoughby. 2008: John Wiley & Sons Ltd.
6.王卉宜,“氮化物紅色螢光粉體之合成製程開發 ”,碩士論文,國立成功大學化學工程學系,台南市,台灣,民國97 年 (2008年)。
7.Lee, W.-C., et al., Novel process for combustion synthesis of AlN powder.Journal of Materials Research, 1995. 10(3): p. 774-778.
8.Lee, W.-C. and S.-L. Chung, Combustion synthesis of Si3N4 powder.Journal of Materials Research, 1997. 12(3): p. 805-811.
9.Hwang, C.-C. and S.-L. Chung, Combustion synthesis of boron nitride powder.Journal of Materials Research, 1998. 13(3): p. 680-686.
10.Lin, C.-N. and S.-L. Chung, Combustion synthesis method for synthesis of aluminum nitride powder using aluminum containers (II). Journal of Materials Research, 2004.19(10): p. 3037-3045.
11.Chung, S.-L., C.-W. Chang, and F.J. Cadete Santos Aires, Reaction mechanism in combustion synthesis of -Si3N4 powder using NaN3. Journal of Materials Research,
2008. 23(10): p. 2720-2726.
12.劉彥群,“白光LED用之高效能氮氧化物螢光粉(Ca-alpha-SiAlON)之合成製程開發 ”,碩士論文,國立成功大學化學工程學系,台南市,台灣,民國98年(2009年)。
13.Shigeo Shionoya, William M. Yen, “Phosphor handbook”, CRC Press LLC, New York, USA(1998).
14.Yen, W.M., S. Shionoya, and H. Yamamoto, Phosphor handbook. 2nd ed. 2006, New York: CRC Press Taylor & Francis Group.
15.溫佑良,“不同粒徑釔鋁石榴石摻鈰螢光體之合成與性質研究 ”,碩士論文,國立成功大學材料科學及工程學系,台南市,台灣,民國92年
(2003年)。
16.陳立德,“鹼土鋁酸鹽MxSr1-xAl2O4:Eu2+(M:Ca,Ba)螢光粉體之發光、色度特性及應用研究 ”,博士論文,國立成功大學材料科學及工程學系,台南市,台灣,民國95年 (2006 年)。
17.Clegg, R. M.; Wang, X. F.; Herman, B. Chemical Analysis Series, 1996, 137, 196.
18.高弘任,“檸檬酸法製備鋁酸鍶鈣螢光粉體及其光性質研究 ”,碩士論文,國立成功大學材料科學及工程學系,台南市,台灣,民國97年
(2008年)。
19.G. Blasse and B. C. Grabmaier, “Luminescence Material”, Springer, Berlin (1994).
20.H. Yamamoto, Physical Chemistry-6th, Oxford University Press,Tokyo (1998).
21.楊幼如,“以奈米軟水鋁石合成銪鏑共摻鋁酸鍶螢光體初探 ”,碩士論文,國立成功大學資源工程研究所,台南市,台灣,民國95年 (2006年)。
22.陳嘉民,“微波輔助溶液燃燒合成法製備螢光粉體 ”,碩士論文,國立成功大學化學工程學系,台南市,台灣,民國95年 (2006年)。
23.Kuboniwa, S., H. Kawai, and T. Hoshina, Cathodoluminescence Saturation and Decay Characteristics of ZnS: Cu,Al Phosphor. Japanese Journal of Applied Physics,1980. 19(9): p. 1647-1653.
24.石景仁,“白光發光二極體用之釔鋁石榴石螢光粉合成及特性分析 ”,碩士論文,國立臺灣大學化學系,台北市,台灣,民國90年 (2001年)。
25.Cao, G.Z. and R. Metselaar, alpha'-SiAlON ceramic - a review. Chemistry ofMaterials, 1991. 3(2): p. 242-252.
26.Schnick, W., Nitridosilicates,oxonitridosilicates(sions), and oxonitridoaluminosilicates (sialons): New materials with promising properties.International Journal of Inorganic Materials, 2001. 3(8): p. 1267-1272.
27.Suehiro, T., et al., Powder synthesis of Ca-alpha'-SiAlON as a host material for phosphors. Chemistry of Materials, 2005. 17(2): p. 308-314.
28.Karunaratne, B.S.B., R.J. Lumby, and M.H. Lewis, Rare-earth-doped alpha'-Sialon ceramics with novel optical properties. Journal of Materials Research, 1996. 11(11): p.2790-2794.
29.Shen, Z.J., M. Nygren, and U. Halenius, Absorption spectra of rare-earth-doped alpha-sialon ceramics. Journal of Materials Science Letters, 1997. 16(4): p. 263-266.
30.Xie, R.J., et al., Preparation and luminescence spectra of calcium- and rare-earth (R= Eu, Tb, and Pr)-codoped alpha-SiAlON ceramics. Journal of the American Ceramic Society, 2002. 85(5): p. 1229-1234.
31.van Krevel, J.W.H., et al., Luminescence properties of terbium-, cerium-, or europium-doped alpha-sialon materials. Journal of Solid State Chemistry, 2002.
32.Xie, R.J., et al., Eu2+-doped Ca-alpha-SiAlON: A yellow phosphor for white light-emitting diodes. Applied Physics Letters, 2004. 84(26): p. 5404-5406.
33.Xie, R.J., and N. Hirosaki, Photoluminescence of Cerium-Doped alpha--SiAlON Materials Journal of the American Ceramic Society, 2004. 87(7): p. 1368-1370.
34.Sakuma, K., et al., Warm-white light-emitting diode with yellowish orange SiAlON ceramic phosphor. Optics Letters, 2004. 29(17): p. 2001-2003.
35.Xie, R.-J., et al., Photoluminescence of rare-earth-doped Ca-alpha-SiAlON phosphors: Composition and concentration dependence. Journal of the American Ceramic Society, 2005. 88(10): p. 2883-2888.
36.Sakuma, K., et al., Luminescence properties of (Ca,Y)- alpha -SiAlON:Eu phosphors. Materials Letters, 2007. 61: p. 547-550.
37.Huang, J.S., et al. A study of luminescent and structure properties of alpha-SiAlON:Yb2+ phosphors prepared by hydrothermal synthesis process. 2007.
Piscataway, NJ 08855-1331, United States: Institute of Electrical and Electronics Engineers Inc.
38.Lin, C.-H., et al. An investigation of luminescent and structure properties of Ca-alpha-SiAlON doped Eu2+ phosphors fabricated by hydrothermal synthesis
process. 2007. Piscataway, NJ 08855-1331, United States: Institute of Electrical and Electronics Engineers Inc.
39.Sakuma, K., N. Hirosaki, and R.-J. Xie, Red-shift of emission wavelength caused by reabsorption mechanism of europium activated Ca-alpha-SiAlON ceramic phosphors.Journal of Luminescence, 2007. 126(2): p.843-852.
40.Zhang, H., et al., Photoluminescence properties of alpha-SiAlON:Eu2+ prepared by carbothermal reduction and nitridation method. Journal of the Electrochemical Society, 2007. 154(2): p. J59-J61.
41.Li, H.L., et al., Fine yellow alpha-SiAlON:Eu phosphors for white LEDs prepared by the gas reduction nitridation method. Science and Technology of Advanced Materials, 2007. 8: p. 601-606.
42.Li, H.L., et al.,Phase purity and luminescence properties of fine Ca-alpha-SiAlON:Eu phosphors synthesized by gas reduction nitridation method. Journal of the Electrochemical Society, 2008. 155(6): p. 175-179.
43.Ryu, J.H., et al., Luminescent properties of Ca-alpha-SiAlON: Eu2+ phosphors synthesized by gas-pressured sintering. Journal of the Electrochemical Society, 2008.155(4): p. 99-104.
44.Suehiro, T., et al., One-step preparation of Ca-alpha-SiAlON: Eu2+ fine powder phosphors for white light-emitting diodes. Applied Physics Letters, 2008. 92(19): p.191904.
45.Jang, B.Y., et al.,Structures and luminescence properties of Eu2+- doped alpha -sialon phosphors for UV-LED. Journal of Electroceram, 2009. 23: p.312-316.
46.Chan, T.S., et al., Photoluminescent and Thermal Stable Properties of Tb3+-Doped Ca- alpha-SiAlON under VUV Excitation. Journal of the Electrochemical Society, 2009.156(7): p. J189-J191.
47.Shioi, K., N. Hirosaki, and R.-J. Xie, Synthesis, Crystal Structure, and Photoluminescence, of Sr-alpha-SiAlON:Eu2+. Journal of the American Ceramic Society, 2010. 93(2): p.465-469.
48.Shioi, K., et al., Photoluminescence and thermal stability of yellow-emitting Sr- alpha -SiAlON:Eu2+ phosphor. Journal of Materials Science Letters, 2010.
49.Zhang, K., et al., Synthesis of Mg-alpha-SiAlON powders from talc and halloysite clay minerals. Journal of the European Ceramic Society, 2000.20: p.1809-1814.
50.Qiu, J.Y., et al., Influence of starting material composition and carbon content on the preparation of Mg-alpha-SiAlON powders by carbothermal reduction-nitridation. Journal of the European Ceramic Society, 2002.22: p.2989-2996.
51.Li, Y., et al., Synthesis of Mg-alpha-sialon from the mixture of silicon, aluminum and magnesia powders in a flowing nitrogen atmosphere. Journal of Materials Science Letters, 2006. 41: p.5815-5819.
52.Xiong, Y., and Z.Y. Fu, Microstructure and properties of translucent Mg–sialon ceramics prepared by spark plasma sintering. Materials Science and Engineering, 2008. 488: p.475-481.
53.Chen, K., et al., Microstructure and formation mechanism of combustion-synthesized rodlike Ca-alpha-sialon crystals. Journal of Materials Research, 2001. 16(7):p. 1928-1934.
54.Chen, W., et al., Synthesis of (Ca,Mg)-alpha-sialon from slag by self-propagating high-temperature synthesis. Journal of Materials Chemistry, 2002. 12: p. 1199-1202.
55.Chen, K., et al., Novel rod-like yttrium-alpha-sialon crystalline powders prepared by combustion synthesis. Materials Chemistry and Physics, 2002. 75: p. 252-255.
56.Fu, R., et al., Combustion synthesis of rod-like alpha-SiAlON seed crystals. MaterialsLetters, 2004. 58(12-13): p. 1956-1958.
57.Liu, G., et al., Preparation of (Ca, Mg) -SiAlON powders by combustion synthesis. ournal of Materials Science, 2005. 40(12): p. 3255-3257.
58.Liu, G., et al., Effect of diluents and NH4F additive on the combustion synthesis of Yb-alpha-SiAlON. Journal of the European Ceramic Society, 2005. 25(14): p.3361-3366.
59.Liu, G., et al., Growth mechanism of Y-alpha-SiAlON whiskers prepared by combustion synthesis. Journal of Materials Research, 2005. 20(4): p. 889-894.
60.Liu, G., et al., Preparation of Ca-alpha-SiAlON powders with rod-like crystals by combustion synthesis. Ceramics International, 2006. 32(4): p. 411-416.
61.Liu, G., et al., Novel faceted SiAlON micro-crystals prepared by combustion synthesis. Journal of the American Ceramic Society, 2006. 89(1): p. 364-366.
62.Liu, G., et al., Phase transformation and growth of rod-like alpha-SiAlON particles during combustion synthesis. Materials Letters, 2006. 60(9-10): p. 1276-1279.
63.Liu, G., et al., Fabrication of (Ca + Yb)- and (Ca + Sr)-stabilized alpha-SiAlON by combustion synthesis. Materials Research Bulletin, 2006. 41(3): p. 547-552.
64.Liu, G., et al., Mechanical-activation-assisted combustion synthesis of alpha-SiAlON in air. Materials Research Bulletin, 2007. 42(6): p. 989-995.
65.Liu, G., et al., Fabrication of one-dimensional rod-like alpha-SiAlON powders in arge scales by combustion synthesis. Journal of Alloys and Compounds, 2008.454(1-2):
p. 476-482.
66.Mitomo, M., M. Takeuchi, and M. Ohmasa, Preparation of alpha-Sialon powders by carbothermal reduction and nitridation. Ceramics International, 1988. 14(1): p.43-48.
67.Munir, Z.A., Synthesis of high-temperature materials by self-propagating combustion methods. American Ceramic Society Bulletin, 1988. 67(2): p. 342-349.
68.Yi, H.C. and J.J. Moore, Self-propagating high-temperature (combustion synthesis SHS) of powder-compacted materials. Journal of Materials Science, 1990. 25(2B): p.1159-1168.
69.Subrahmanyam, J. and M. Vijayakumar, Self-propagating high-temperature synthesis.Journal of Materials Science, 1992. 27(23): p. 6249-6273.
70.Tsuji, K., X-Ray Technology, in Kirk‑Othmer Encyclopedia of Chemical Technology.2007, John Wiley & Sons, Inc.
71.Weaver, R., Microscopy, in Kirk‑Othmer Encyclopedia of Chemical Technology.2003, John Wiley & Sons, Inc.
72.Hwang, S.L. and I.W. Chen, Nucleation amd growth of alpha'-Sialon on alpha-Si3N4. Journal of the American Ceramic Society, 1994. 77(7): p. 1711-1718.
校內:2015-07-29公開