簡易檢索 / 詳目顯示

研究生: 邱振豪
Chiu, Chen-Hao
論文名稱: 碳紙電極應用於血紅蛋白之無標記式電化學感測
Label-Free Electrochemical Sensing of Hemoglobin by Carbon Paper Electrode
指導教授: 周澤川
Chou, Tse-Chuan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 68
中文關鍵詞: 血紅蛋白無標記式溶氧碳紙電極微分脈衝伏安法
外文關鍵詞: Hemoglobin, Label-free sensor, Dissolved gas, Carbon paper electrode, Differential pulse voltammetry
相關次數: 點閱:114下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出一個不需添加標定物質(Label-Free)的電化學式血紅蛋白(Hemoglobin)生物感測器,其在血紅蛋白濃度0.0001~1mg/ml, PBS的範圍內,可獲取快速的電化學還原電流嚮應訊號。吸附在碳紙電極上的血紅蛋白可利用微分脈衝伏安法(Differential pulse voltammetry)掃描獲得高靈敏度且低背景電流的偵測訊號。

    實驗結果顯示,由於血紅蛋白捕捉結合氧氣的特性,促進了水中溶氧在碳紙電極上的還原反應,使其向正電位偏移。雖然感測系統中的血紅蛋白和肌紅蛋白(Myoglobin)還原峰不易分離,但來自肌紅蛋白的干擾可以經由在酸性環境中感測下最小化。再經過界面活性劑溶液浸泡改質的電極表面可以大幅降低肌紅蛋白的訊號,使得血紅蛋白和肌紅蛋白的訊號比值由0.79提高至80。而牛血清白蛋白(Bovine serum albumin)、溶菌酶(Lysozyme)在此電化學系統中沒有電化學訊號響應。經由電子顯微鏡影像中吸附血紅蛋白的分佈顯示,碳紙電極上的淺凹槽結構主導了血紅蛋白的吸附區域。

    由於不需要額外添加具有電化學活性之反應媒子或螢光標誌,此感測系統提供一種可能用於體內in vivo感測血紅蛋白濃度的途徑。

    A label-free electrochemical hemoglobin biosensor able to rapidly respond to a wide-range of analyte concentrations (0.0001 to 1 mg/ml in PBS) is presented. Hemoglobin adsorption on a carbon paper electrode is detected by exploiting the high sensitivity and low background current of differential pulse voltammetry.

    The results indicate that oxygen reduction on the carbon electrodes is facilitated leading to a positive potential shift by the oxygen-binding property of hemoglobin. Although the reduction peaks caused by adsorption of hemoglobin and myoglobin are harder to separate, interference from myoglobin was able to be minimized by measuring in an acidic environment. And further modification of electrode surface by surfactants immersion can dramatically decrease the myoglobin signal, thus Hemoglobin /Myoglobin signal ratio increased from 0.79 to 80. The response of the electrodes when challenged with bovine serum albumin (BSA), lysozyme is also reported, with no current response to BSA or lysozyme being detected. The SEM images indicate the presence of micro structures comprising shallow notches on the carbon electrodes that lead to an unequal distribution of absorbed proteins.

    Since there are no electrical active probes or fluorescence-labeling chemicals involved, this platform offers a potentially safer route to in vivo hemoglobin measurement.

    中文摘要 I Extended Abstract II 誌謝 VIII 目錄 IX 表目錄 XI 圖目錄 XII 縮寫符號表 XIV 第一章 緒論 1 1.1 帶有原血紅素基團的蛋白質 5 1.2 血紅蛋白和肌紅蛋白的生化特性 5 1.2.1 血紅蛋白對氧的協同結合效應 8 1.2.2 Bohr效應 12 1.3 界面活性劑 14 1.4 微分脈衝伏安法 15 第二章 實驗方法與材料 17 2.1 研究路徑 18 2.2碳紙電極的製備 20 2.3碳紙電極的表面改質 20 2.4電化學感測分析環境設定 21 第三章 結果與討論 22 3.1不同血紅蛋白濃度對微分脈衝伏安法響應的影響 22 3.2不同血紅蛋白吸附時間對微分脈衝伏安法響應的影響 26 3.3溶氧的影響和感測機構原理 29 3.4 電流響應與溶液pH值的相關性 36 3.5用於感測真實血液樣本的評估 39 3.6電極表面形態的電子顯微鏡SEM影像 44 3.7 使用界面活性劑進行表面改質 46 3.8 表面改質之碳紙電極對不同濃度目標蛋白質的電流響應 56 3.9人類血清對表面改質電極感測血紅蛋白的影響 56 3.10系統溶液pH值對表面改質電極感測血紅蛋白的影響 60 3.11 對細胞色素C的微分脈衝伏安法響應 62 第四章 結論 65 參考文獻 67

    1. Newman, J.D. and A.P.F. Turner, Home blood glucose biosensors: a commercial perspective. Biosensors & Bioelectronics, 2005. 20(12): p. 2435-2453.
    2. Chien, H.-C. and T.-C. Chou, Glassy Carbon Paste Electrodes for the Determination of Fructosyl Valine. Electroanalysis, 2010. 22(6): p. 688-693.
    3. Chuang, S.W., J. Rick, and T.C. Chou, Electrochemical characterisation of a conductive polymer molecularly imprinted with an Amadori compound. Biosensors & Bioelectronics, 2009. 24(10): p. 3170-3173.
    4. Chen, X.-W., J.-W. Liu, and J.-H. Wang, A Highly Fluorescent Hydrophilic Ionic Liquid as a Potential Probe for the Sensing of Biomacromolecules. Journal of Physical Chemistry B, 2011. 115(6): p. 1524-1530.
    5. Eo, S.-H., Won, K.-J., Song, S., Yoon, B., & Kim, J.-M., Hemoglobin detection on a microfluidic sensor chip with a partially conjugated polymer. Bulletin of the Korean Chemical Society, 2010. 31(2): p. 467-469.
    6. Wu, S., W. Tan, and H. Xu, Protein molecularly imprinted polyacrylamide membrane: for hemoglobin sensing. Analyst (Cambridge, United Kingdom), 2010. 135(10): p. 2523-2527.
    7. Lin, Y.-H. , Cheng, Y.-F., Chang, C.-H., & Shen, T. Y. S., Hemoglobin-detecting electrode test strip and device comprising the same, 2009, (Apex BioTechnology Corp., Taiwan).
    8. Haab, B.B., Methods and applications of antibody microarrays in cancer research. Proteomics, 2003. 3(11): p. 2116-2122.
    9. Kunduru, V., Grosch, J., Prasad, S., Patra, P. K., & Sengupta, S., 'Lab on a chip' label free protein sensor systems based on polystyrene bead and nanofibrous solid supports. NSTI Nanotech, Nanotechnology Conference and Trade Show, Technical Proceedings, Boston, MA, United States, June 1-5, 2008, 2008. 3: p. 335-338.
    10. Zhang, J.K., Dong, S. M., Lu, J. H., Turner, A. P. F., Fan, Q. J., Jia, S. R., . . . He, G. W., A Label Free Electrochemical Nanobiosensor Study. Analytical Letters, 2009. 42(17): p. 2905-2913.
    11. Daniels, J.S. and N. Pourmand, Label-free impedance biosensors: Opportunities and challenges. Electroanalysis, 2007. 19(12): p. 1239-1257.
    12. Feng, X.M., Li, R. M., Hu, C. H., & Hou, W. H., Direct electron transfer and electrocatalysis of hemoglobin immobilized on graphene-Pt nanocomposite. Journal of Electroanalytical Chemistry, 2011. 657(1-2): p. 28-33.
    13. Xu, J.M., Li, W., Yin, Q. F., Zhong, H., Zhu, Y. L., & Jin, L. T., Direct electron transfer and bioelectrocatalysis of hemoglobin on nano-structural attapulgite clay-modified glassy carbon electrode. Journal of Colloid and Interface Science, 2007. 315(1): p. 170-176.
    14. Bard, A.J. and L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications. 2nd ed2000: Wiley. 286-293.
    15. RCSB Protein Data Bank. Available from: http://www.rcsb.org/.
    16. Berg, J.M., J.L. Tymoczko, and L. Stryer, Biochemistry: international edition2011: WH Freeman & Company Limited.
    17. Bohr, C., K. Hasselbalch, and A. Krogh, On the Influence of Carbonic Acid Tension on the Oxygen Uptake in the Blood. [machine translation]. Centr.-Bl. f. Physiol. FIELD Full Journal Title:, 1904. 17: p. 661-64.
    18. Nelson, D.L., A.L. Lehninger, and M.M. Cox, Lehninger principles of biochemistry2008: Macmillan.
    19. Loget, G., Chevance, S., Poriel, C., Simonneaux, G., Lagrost, C., & Rault-Berthelot, J., Direct Electron Transfer of Hemoglobin and Myoglobin at the Bare Glassy Carbon Electrode in an Aqueous BMI.BF(4) Ionic-Liquid Mixture. Chemphyschem, 2011. 12(2): p. 411-418.
    20. He, P.L., N.F. Hu, and G. Zhou, Assembly of electroactive layer-by-layer films of hemoglobin and polycationic poly(diallyldimethylammonium). Biomacromolecules, 2002. 3(1): p. 139-146.
    21. Kondo, A. and J. Mihara, Comparison of adsorption and conformation of hemoglobin and myoglobin on various inorganic ultrafine particles. Journal of Colloid and Interface Science, 1996. 177(1): p. 214-221.
    22. Kuwada, T., Hasegawa, T., Takagi, T., Sato, I., & Shishikura, F., pH-dependent structural changes in haemoglobin component V from the midge larva Propsilocerus akamusi (Orthocladiinae, Diptera). Acta Crystallographica, Section D: Biological Crystallography, 2010. D66(3): p. 258-267.

    無法下載圖示 校內:2020-01-26公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE