簡易檢索 / 詳目顯示

研究生: 楊博智
Yang, Po-Chih
論文名稱: 光學活性化合物之合成、物性探討及其在膽固醇型液晶元件之應用探討
Synthesis and Characterization of Novel Chiral Compounds and Their Applications in Cholesteric Liquid Crystal Devices
指導教授: 劉瑞祥
Liu, Jui-Hsiang
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 239
外文關鍵詞: photoisomerization, liquid crystal, chiral
相關次數: 點閱:78下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • A series of novel monomers and polymers containing chiral, photosensitive, mesogenic groups were designed and synthesized by attaching different types of mesogenic units, terminal chiral and achiral segments to investigate the structure-property relation of liquid crystals and the chiral and photoisomerizable effect on cholesteric liquid crystals and liquid crystalline polymers. The structures of the synthesized compounds were identified using 1H-NMR, 13C-NMR, FTIR, and elemental analyses. The thermal, optical, photo-induced properties of these compounds were analyzed using DSC, TGA, UV-Vis, X-ray and POM.
    The research work was carried out in two parts. In Part I, a series of polymers consisting of single (chiral homopolymers P1-P11 (chapter 2), homopolymers with mesogenic groups P18-P23 (chapter 3), and azo homopolymers P26-P28 (chapter 3)), binary (CP1-CP20 (chapter 4)) or ternary systems (CP21-CP32 (chapter 4)) with chiral, photoisomerizable or mesogenic groups were synthesized. It has been demonstrated that liquid crystal phases could be formed through suitable rigid mesogenic core and spacer length at the center and terminals. The existence of the steric hindered menthyl group in monomers M1-M6 (chapter 2) seemed to disturb the arrangement of the molecules leading to the disappearance of liquid crystal phases. However, liquid crystal phases could be induced by introducing a small steric hindered isobutyl and butyl isopropanoate groups in molecules. The longer rigid mesogenic core in molecules might stabilize and enhance the orientational order of liquid crystal molecules leading to the generation of wide transition temperature range of mesophases. Homopolymers P18-P23 exhibited enantiotropic mesophases and broad transition temperatures, moreover, the thermal decomposition temperatures T5% (5 % weight loss) of the polymers ranged from 387 to 404 oC, indicating that the synthesized polymers have a higher thermal stability in spite of various terminal substituents. Introduction an electron-(withdrawing/donating) into the terminal group of azo homopolymers P26-P28 dramatically influenced the photochemical switching and thermal stability in chloroform solutions. TGA results showed that the thermal decomposition temperatures at which 5 % weight loss occurred (Td) were greater than 360 oC for all ternary copolymers CP1-CP32, indicating that the synthesized SCLCPs have a higher thermal stability. The photoinduced Z-form photochromic segments in polymers CP20 was stable, and the configurational structure at C=C bond was completely retained during the period of the heat treatment. The thermal stable photochromic polymers are expected to be applied in the field of the preparation of optical storage and image recordable materials. The cholesteric polymeric film CP23 with a helical pitch of about 560 nm was achieved by thermal annealing under mesophase temperature for 40-60 min. The synthesized copolymers CP25 and CP26 containing two different types of photoisomerizable (N=N and C=C) groups sensitive to the different light wavelengths present a marked interest from the viewpoint of studying the photochromic processes in polymer materials with dual photochromism. Selecting the wavelength of incident light, one may induce a preferential isomerization either of cinnamoyl (C=C) or azobenzene (N=N) photochromic groups. The characterization of cholesteric polymeric films with various pitch lengths were investigated and the chiral dopants were found to be beneficial for manufacturing optical films, e.g. color filters, cholesteric reflective polarizers, and brightness enhancing films.
    In part II, in order to investigate the steric effects of chiral terminal groups on the induction of cholesteric liquid crystals and the sensitivity of the photoisomerizable azobenzene derivatives, a series of chiral compounds and photoisomerizable chiral azobenzene derivatives with various end-capped chiral group were synthesized. The inductive, thermal, enantiomeric, and UV effects of chiral dopants on cholesteric liquid crystals were also confirmed. To overcome the reversible property and the defects of the thermal stability of azobenzene, a novel chiral dopant isosorbide 2,5-bis(4-methoxy- cinnamate) (78) (chapter 6) with two photochromic C=C segments was synthesized from cinnamic acid. The results revealed that the molecular polarity and chirality might affect the intermolecular forces between the chiral dopants and the liquid crystals leading to the generation of various helical twisting powers (HTP) inductions. Furthermore, it showed that the addition of chiral dopants into nematic liquid crystals could induce both right-handed and left-handed helical cholesteric textures independent of the R/S and (+)/(-) of the chiral dopants. The reflection band of the ChLC cells was shifted by UV irradiation due to the E-Z configurational change of the azo dopants. A reasonable schematic representation of both the photoisomerization of the azo dopants and its chiral effect on the variation of twisting pitches was proposed. The stability and reproducibility of the photoinduced variation in UV-vis spectra were confirmed. The addition of the synthesized (-)-menthyl 4-(4-undecyloxyphenylazo) benzoate (AzoM) (chapter 6) helped further in recording the patterns onto the choleateric liquid crystal films using 365 nm UV light exposure. The phototuning ability of the AzoM will be useful in the designing of the photo-recordable and tunable liquid crystal lasing materials. The electro-optic properties of cholesteric liquid crystal cells were also estimated. Real RGB image recording of the ChLC cells was achieved by using UV irradiation through a mask. The reflected band width of the cells was broadened and the gradient pitches were formed after sufficient UV polymerization. This technique of the photochemical tuning capability of chiral compounds is expected to be used as a brightness enhancement film which could be applied in the back light module of the liquid crystal display.

    Chapter 1 General introduction and theoretical background------------------------ 1 1.1. Preface------------------------------------------------------------------------------------ 1 1.2. Introduction of liquid crystals--------------------------------------------------------- 2 1.2.1. Thermotropic liquid crystal-------------------------------------------------- 3 1.2.1.1. Nematic LC phase------------------------------------------------------ 3 1.2.1.2. Smectic LC phase------------------------------------------------------ 5 1.2.1.2.1. Smectic A phase----------------------------------------------- 6 1.2.1.2.2. Smectic C phase------------------------------------------------ 6 1.2.1.3. Cholesteric LC phase-------------------------------------------------- 7 1.2.1.4. Discotic LC phase------------------------------------------------------ 8 1.2.2. Lyotropic liquid crystal------------------------------------------------------ 9 1.2.3. Anisotropies of liquid crystals---------------------------------------------- 11 1.2.3.1. Birefringence of liquid crystals--------------------------------------- 11 1.2.3.2. Dielectric properties of liquid crystals------------------------------- 11 1.2.4. Effect of chirality-------------------------------------------------------------- 13 1.2.4.1. Chiral dopants---------------------------------------------------- 14 1.2.4.2. Selective light reflection----------------------------------------- 15 1.2.4.3. Textures of cholesteric liquid crystals------------------------- 17 1.2.4.4. Twist grain boundary phases----------------------------------- 18 1.3. Side chain liquid crystalline polymers----------------------------------------------- 19 1.3.1. General aspects of core length: terminal, linking and lateral group----- 21 1.3.2. Chiral groups-------------------------------------------------------------------- 22 1.4. Identification of liquid crystalline phases------------------------------------------- 23 1.5. The Mitsunobu reaction--------------------------------------------------------------- 24 1.6. Introduction and theory of photochromic compounds----------------------------- 25 1.6.1. The principal paths of photochemical and thermal E/Z isomerization-- 25 1.6.2. The mechanism of E/Z isomerization---------------------------------------- 26 1.7. Photochemical reaction of p-cinnamic acids---------------------------------------- 28 1.7.1. Cycloaddition reactions-------------------------------------------------------- 30 1.8. Research motivations------------------------------------------------------------------- 31 1.9. References------------------------------------------------------------------------------- 33 Part I Chapter 2 Synthesis and characterization of novel monomers and polymers containing various chiral groups---------------------------------------------- 38 2.1. Introduction------------------------------------------------------------------------------ 38 2.2. Experimental---------------------------------------------------------------------------- 40 2.2.1. Measurements------------------------------------------------------------------- 40 2.2.2. Materials------------------------------------------------------------------------- 41 2.2.3. Synthesis of chiral monomers------------------------------------------------- 41 2.2.4. Polymerization------------------------------------------------------------------ 51 2.2.5. Fabrication of liquid crystal cells--------------------------------------------- 51 2.3. Results and discussion----------------------------------------------------------------- 57 2.3.1. Synthesis, thermal and optical properties of chiral monomers----------- 57 2.3.2. Photoinduced E/Z isomerzation of photochromic monomers with chiral groups--------------------------------------------------------------------- 64 2.3.3. Synthesis, thermal and optical properties of chiral homopolymers------ 65 2.3.4. Effect of photo-induced E/Z isomerzation on ChLC cells---------------- 69 2.4. Conclusions------------------------------------------------------------------------------ 72 2.5. References------------------------------------------------------------------------------- 72 Chapter 3 Synthesis, characterization, and thermal properties of side chain liquid crystalline homopolymers containing mesogenic or azo groups-------------------------------------------------------- 75 3.1. Introduction------------------------------------------------------------------------------ 75 3.2. Experimental---------------------------------------------------------------------------- 78 3.2.1. Measurements------------------------------------------------------------------- 78 3.2.2. Synthesis of monomers containing mesogenic segments----------------- 78 3.2.3. Synthesis of monomers containing azo segments-------------------------- 83 3.2.4. Polymerization------------------------------------------------------------------ 89 3.3. Results and discussion----------------------------------------------------------------- 89 3.3.1 Thermal properties of monomers containing mesogenic segments------- 89 3.3.2 Thermal properties of monomers containing azo segments--------------- 93 3.3.3 Photoinduced E/Z isomerization of monomers having azo segments---- 95 3.3.4 Thermal properties of homomonomers containing mesogenic segments-98 3.3.5 Thermal properties of homomonomers containing azo segments-------- 101 3.3.6. Photoinduced E/Z isomerzation of photochromic homopolymers------- 103 3.4. Conclusions------------------------------------------------------------------------------ 105 3.5. References------------------------------------------------------------------------------- 106 Chapter 4 Synthesis, characterization, and thermal properties of side chain liquid crystalline polymers containing multifunctional groups------------------------------------------------------------------------------- 109 4.1. Introduction------------------------------------------------------------------------------ 109 4.2. Experimental---------------------------------------------------------------------------- 111 4.2.1. Measurements------------------------------------------------------------------- 111 4.2.2. Synthesis of monomers-------------------------------------------------------- 112 4.2.3. Polymerization------------------------------------------------------------------ 112 4.3. Results and discussion----------------------------------------------------------------- 115 4.3.1. Synthesis and characterization of binary polymers containing mesogenic, and chiral segments---------------------------------------------- 115 4.3.1.1. Thermal properties of binary polymers containing mesogenic, and chiral segments------------------------------------- 115 4.3.1.2. Thermal stability of binary polymers containing mesogenic, and chiral segments--------------------------------------------------- 121 4.3.2. Synthesis and characterization of binary polymers containing mesogenic and chiral cinnamate-containing segments-------------------- 122 4.3.2.1. Thermal properties of binary polymers containing mesogenic and chiral cinnamate-containing segments------------------------- 122 4.3.2.2. Thermal stability of binary polymers containing mesogenic and chiral cinnamate-containing segments------------------------- 123 4.3.2.3. Photoinduced E/Z isomerzation of photochromic polymers----- 124 4.3.3. Synthesis and characterization of ternary polymers having mesogenic, chiral, and photochromic segments------------------------------------------ 127 4.3.3.1. Introduction------------------------------------------------------------- 127 4.3.3.2. Thermal properties of ternary polymers having mesogenic, chiral, and photochromic segments----------------------------------- 129 4.3.3.3. Thermal stability of ternary polymers having mesogenic, chiral, and photochromic segments----------------------------------- 132 4.3.3.4. Photoinduced E/Z isomerzation of photochromic polymers----- 134 4.4. Conclusions------------------------------------------------------------------------------ 138 4.5. References------------------------------------------------------------------------------- 139 Part II Chapter 5 Photochemical tuning capability of cholesteric liquid crystal cells containing chiral dopants end capped with menthyl groups------------------------------------------------------------------------------ 143 5.1. Introduction------------------------------------------------------------------------------ 143 5.2. Experimental---------------------------------------------------------------------------- 145 5.2.1. Measurements------------------------------------------------------------------- 145 5.2.2. Materials------------------------------------------------------------------------- 145 5.2.3. Synthesis of monomers-------------------------------------------------------- 146 5.2.4. Fabrication of liquid crystal cells--------------------------------------------- 146 5.3. Results and discussion----------------------------------------------------------------- 147 5.3.1. Inductive effect of chiral dopants on cholesteric liquid crystal cells---- 147 5.3.2. Thermal and doping effect of chiral dopants on cholesteric liquid crystal cells---------------------------------------------------------------------- 149 5.3.3. Depending of UV polymerization on the reflected band on cholesteric liquid crystal cells------------------------------------------------- 151 5.3.4. Effect of photoisomerization of AzoM on the reflected band of cells--- 153 5.3.5. The morphology of the polymer network after UV polymerization----- 156 5.3.6. Effect of enantiomers on the reflected band of cells----------------------- 163 5.3.7. Application of electric field on cholesteric cells--------------------------- 165 5.4. Conclusions------------------------------------------------------------------------------ 167 5.5. References------------------------------------------------------------------------------- 167 Chapter 6 Optical behaviors of cholesteric liquid crystal cells with novel photoisomerizable chiral dopants--------------------------------------------- 169 6.1. Introduction------------------------------------------------------------------------------ 169 6.2. Experimental---------------------------------------------------------------------------- 171 6.2.1. Measurements------------------------------------------------------------------- 171 6.2.2. Materials------------------------------------------------------------------------- 172 6.2.3. Synthesis of photoisomerizable chiral compounds------------------------ 172 6.2.4. Fabrication of liquid crystal cells--------------------------------------------- 178 6.3. Results and discussion----------------------------------------------------------------- 178 6.3.1. Thermal and optical properties of chiral compounds---------------------- 178 6.3.2. Photoinduced E/Z isomerzation of chiral photochromic compounds--- 181 6.3.3. Inductive and thermal effects on cholesteric liquid crystal cells--------- 184 6.3.4. UV effects of chiral dopants on cholesteric liquid crystal cells---------- 192 6.4. Conclusions------------------------------------------------------------------------------ 203 6.5. References------------------------------------------------------------------------------- 203 Chapter 7 Optical behaviors of photoimageable cholesteric liquid crystal cells with novel chiral compounds-------------------------------------------- 206 7.1. Introduction------------------------------------------------------------------------------ 206 7.2. Experimental---------------------------------------------------------------------------- 207 7.2.1. Measurements------------------------------------------------------------------- 207 7.2.2. Materials------------------------------------------------------------------------- 208 7.2.3. Synthesis of chiral compounds----------------------------------------------- 208 7.2.4. Fabrication of liquid crystal cells--------------------------------------------- 211 7.3. Results and discussion----------------------------------------------------------------- 213 7.3.1. Thermal and optical properties of chiral compounds---------------------- 213 7.3.2. Inductive effects on cholesteric liquid crystal cells------------------------ 215 7.3.3. Effects of photo-induced E/Z isomerization on ChLC cells-------------- 220 7.4. Conclusions------------------------------------------------------------------------------ 222 7.5. References------------------------------------------------------------------------------- 222 Chapter 8 Preparation and characterization of cholesteric polymeric films containing a novel chiral dopant---------------------------------------------- 224 8.1. Introduction------------------------------------------------------------------------------ 224 8.2. Experimental---------------------------------------------------------------------------- 225 8.2.1. Materials and analytical instruments----------------------------------------- 225 8.2.2. Synthesis of chiral compound------------------------------------------------- 225 8.2.3. Preparation of cholesteric polymeric film----------------------------------- 226 8.3. Results and discussion----------------------------------------------------------------- 226 8.4. Conclusions------------------------------------------------------------------------------ 229 8.5. References------------------------------------------------------------------------------- 230 Chapter 9 Conclusions------------------------------------------------------------------------ 231 Appendix---------------------------------------------------------------------------------------- 234 Curriculum Vitae-----------------------------------------------------------------------------234 List of Publication--------------------------------------------------------------------------- 235

    Chapter 1
    [1] D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, V. Vill. “Handbook of Liquid Crystals.” Vol. 2A, Weinheim, Wiley-VCH, (1998).
    [2] H.-K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda. J. Phys. Chem. B., 104, 7023 (2000).
    [3] (a) A. Y. Bobrovsky, N. I. Boyko, V. P. Shibaev. Chem. Mater., 13, 1998 (2001). (b) A. Y. Bobrovsky, N. I. Boyko, V. P. Shibaev. Liq. Cryst., 28, 919 (2001). (c) A. Y. Bobrovsky, N. I. Boyko, V. P. Shibaev. Liq. Cryst., 26, 1749 (1999). (d) E. Mena, P. Van de witte, J. Lub. Liq. Cryst., 27, 929 (2000). (e) P. Van de witte, E. E. Neuteboom, M. Brehmer, J. Lub. J. Appl. Phys., 85, 7517 (1999). ( f ) P. Van de witte, J. C. Galan, J. Lub. Liq. Cryst., 24, 819 (1998).
    [4] (a) P. V. Shibaev, V. I. Kopp, A. Z. Genack, J. Phys. Chem. B., 107, 6961 (2003). (b) H. Takeda, K. Yoshino. Phys. Rev. E., 67, 56607 (2003). (c) Y.-C. Yang, C.-S. Kee, J.-E. Kim, H. Y. Park Phys. Rev. E., 60, 6852 (1999). (d) C.-Y. Huang, J. J. Stott, R. Petschek. Phys. Rev. Lett., 80, 5603 (1998).
    [5] F. Reinitzer. Monatsh, 9, 421 (1888).
    [6] O. Lehmann, Z. Phys. Chem., 4, 462 (1889).
    [7] (a) O. Lehmann, Ann. Physik., 25, 852 (1908). (b) O. Lehmann, Ann. Physik., 27, 1099 (1908).
    [8] A. M. Donald, A. H. Windle. “Liquid crystalline polymers.” Cambridge solid state science series, p. 108 (1992).
    [9] H. Baumgärtel, E. U. Franck, W. Grünbein. “Topics in Physical Chemistry.” Vol 3, Chap. 1, New York, Springer. ISBN 0-387-91421-8 (1994).
    [10] P. J. Collings, M. Hird. “Introduction to Liquid Crystals Chemistry and Physics.” Chap. 3, Taylor and Francis, London, ISBN 0-7484-0643-3 (1997).
    [11] R. Janoschek (ed.). “Chirality-From Weak Bosons to the α-Helix.” Springer-Verlag, Berlin (1991).
    [12] V. Prelog, G. Helmchen. Angew. Chem., 94, 614 (1982).
    [13] For reviews on chiral low molecular weight dopants: (a) G. Solladié, R. G. Zimmermann. Angew. Chem., Int. Ed. Engl., 23, 348 (1984). (b) G. P. Spada, G. Proni, Enantiomer. 3, 301 (1998). (c) G. Proni, G. P. Spada. Enantiomer. 6, 171 (2001).
    [14] N. Tamaoki, Adv. Mater., 13, 1135 (2001).
    [15] For reviews on switching in liquid crystalline environments, see: (a) K. Ichimura. Chem. Rev., 100, 1847 (2000). (b)T. Ikeda, A. Kanazawa, in “Molecular Switches.” B. L. Feringa, Wiley-VCH, Weinheim, p. 363-397 (2001). (c) T. Ikeda, J. Mater. Chem., 13, 2037 (2003).
    [16] General books on liquid crystalline research: (a) P. J. Collins, M. Hird. “Introduction to Liquid Crystals-Chemistry and Physics.” Taylor and Francis, London (1997). (b) I. Dierking. “Textures of Liquid Crystals.” Wiley-VCH,Weinheim (2003). (c) P. J. Collins, J. S. Patel. “Handbook of Liquid Crystal Research.” Oxford University Press, New York, Oxford (1997). (d) D. Demus, J. W. Goodby, G. W. Gray, H.-W. Spiess, V. Vill. “Handbook of Liquid Crystals.” Wiley-VCH, Weinheim (1998) (e) H.-S. Kitzerow, C. Bahr. “Chirality in Liquid Crystals.” Springer-Verlag, New York (2001).
    [17] J. W. Goodby, R. Blinc, N. A. Clark, S. T. Lagerwall, M. A. Osipov, S. A. Pikin, T. Sakurai, K. Yoshino, B. Zeks. “Ferroelectric Liquid Crystals: Principles, Properties and Applications.” Gordon & Breach, Philadelphia (1991).
    [18] G. Hallas. “Organic Stereochemistry.” McGraw-Hill, London (1965).
    [19] S. T. Wu, D. K. Yang. “Reflective Liquid Crystal Displays.” Wiley, New York, ISBN 0-471-49611-1 (2001).
    [20] De Gennes P. Solid. State. Commun., 10, 753 (1972).
    [21] S. R. Renn, T. C. Lubensky. Phys. Rev., A. 38, 2132 (1988)
    [22] J. W. Goodby, M. A. Waugh, S. M. Stein, E. Chin, R. Pindak, J. S. Patel. Nature 337, 449 (1989).
    [23] J. W. Goodby, M. A. Waugh, S. M. Stein, E. Chin, R. Pindak, J. S. Patel. J. Am. Chem. Soc., 111, 8119 (1989).
    [24] A. J. Slaney, J. W. Goodby. J. Mater. Chem., 1, 5 (1991).
    [25] A. J. Slaney, J. W. Goodby. Liq. Cryst., 9, 849 (1991).
    [26] A. Bouchta, H. T. Nguyen, M. F. Achard, F. Hordouin, C. Destrade, R. J. Tweig, A. Maaroufi, N. Isaert. Liq.Cryst., 12 575 (1992).
    [27] G. Strajer, R. Pindak, M. A. Waugh, J. W. Goodby, J. S. Patel. Phys. Rev. Lett., 64, 1545 (1990).
    [28] (a) L. Navailles, P. Barois, H. T. Nguyen. Phys. Rev. Lett. 71, 545 (1993). (b) L. Navailles, R. Pindak, P. Barois, H. T. Nguyen. Phys. Rev. Lett., 74 5224 (1995). (c) L. Navailles, P. Barois, H. Nguyen. Phys. Rev. Lett., 72, 1300 (1994).
    [29] K. Takatoh, A. G. M. Lamb, J. W. Goodby. unpublished results.
    [30] P. A. Pramod, R. Pratibha, N. V. Madhusudana. Current. Sci., 73, 761 (1997).
    [31] J. W. Goodby, I. Nishiyama, A. J. Slaney, C. J. Booth, K. J. Toyne. Liq. Cryst., 14, 37 (1993)
    [32]. I. Dierking, S. T. Lagerwall. Liq. Cryst., 26, 83 (1999).
    [33] C. D. Cruz, J. C. Rouillon, J. P. Marcerou, N. Isaer, H. T. Nguyen. Liq. Cryst., 28, 125 (2001).
    [34] H. Finkelmann, G. Rehage. Adv. Polym. Sci., 60/61, 99 (1984).
    [35] V. P. Shibaev, N. A. Plate. Adv. Polym. Sci., 60/61, 173 (1984).
    [36] (a) H. Finkelmann, H. Ringsdorf, J. H. Wendorff. Makromol. Chem., 179, 273 (1978). (b) K. Ichimura. Chem. Rev., 100, 1847 (2000).
    [37] V. Percec, D.Tomazos. Adv. Mater., 4, 548, (1992).
    [38] T. Kato, J. M. J. Frechet. Macromolecules 22, 3813 (1989).
    [39] Zentel R. “Polymers with side-chain mesogenic units.” In: Allen G (ed) Comprehensive polymer science, Vol 5. Pergamon Press, Oxford, p.723 (1989).
    [40] D. Demus, H. Demus,H. Zaschke. “Flüssige Kristalle in Tabellen” VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, German Democratic Republic (1974).
    [41] D. Demus, H. Zaschke. “Flüssige Kristalle in Tabellen” Vol. II, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, German Democratic Republic (1984).
    [42] H. Kelker, R. Hatz, C. Schumann. “Handbook of Liquid Crystals” Verlag Chemie, Weinheim, Deerfield, Ill. (1980).
    [43] H. Schubert, H. Dehne. Z. Chem., 12, 241 (1972).
    [44] H.-J. Deutscher, H.-M. Vorbrodt, H. Zaschke. Z. Chem., 21, 9 (1981).
    [45] D. J. Byron, D. A. Keating, M. T. O’Neill, R. C. Wilson, J. W. Goodby, G. W. Gray, Mol. Cryst. Liq. Cryst., 58, 179 (1980).
    [46] P. J. Bullock, D. J. Byron, D. J. Harwood, R. C. Wilson, A. M. Woodward. J. Chem. Soc., Perkin Trans. 2, 2121 (1984).
    [47] D. J. Byron, R. C. Wilson, P. A. Baker, I. Danilewicz, G. S. Hayer, D. A. Hewison, J. M. Taylor, J. M. Wyer. J. Chem. Soc., Perkin Trans. 2, 297 (1985).
    [48] N. A.Vaz, S. L. Arora, J. W. Doane, A. D. Vries. Mol. Cryst. Liq. Cryst., 128, 23 (1985).
    [49] G. W. Gray, A. Mosley. Mol. Cryst. Liq. Cryst., 37, 213 (1976).
    [50] R. J. Cox, N. J. Clecak. Mol. Cryst. Liq. Cryst., 37, 241 (1976).
    [51] J. Malthete, J. Canceill, J. Gabard, J. Jacques. Tetrahedron, 37, 3815 (1981).
    [52] R. J. Cox, N. J. Clecak. Mol. Cryst. Liq. Cryst., 37, 263 (1976).
    [53] J. C. Duois, A. Zann, N. H. Tinh, C. R. Hebd. Seances Acad. Sci., Ser. C, 284, 137 (1977).
    [54] O. Mitsunobu. “The Use of Diethyl Azodicarboxylate and Triphenylphosphine in Synthesis and Transfromation of Natural Products.” Synthesis 1-28 (1981).
    [55] D. L. Hughes. “The Mitsunobu Reaction.” Org. Reactions. 42, 335-656 (1992).
    [56] D. L. Hughes. “Progress in the Mitsunobu Reaction. A Review.” Org. Prep., 28, 127-164 (1996).
    [57] Mitsunobu, O. Y. “Preparation of Esters of Carboxylic and Phosphoric Acid via Quaternary Phosphonium Salts.” M. Bull. Chem. Soc. Jpn. 40, 2380-2382 (1967).
    [58] E. Grochowski, B. D. Hilton., R. J. Kupper, C. J. Michejda. “Mechanism of the Triphenylphosphine and Diethyl Azodicarboxylate Induced Dehydration Reactions (Mitsunobu Reaction). The Central Role of Pentavalent Phosphorus Intermediates.” J. Am. Chem. Soc., 104, 6876-6877 (1982).
    [59] D. Camp, I. D. Jenkins. “The Mechanism of the Mitsunobu Esterification Reaction. Part 1. The Involvement of Phosphoranes and Oxyphosphonium Salts.” J. Org. Chem., 54, 3045-3049 (1989).
    [60] D. Camp, I. D. Jenkins. “The Mechanism of the Mitsunobu Esterification Reaction. Part 2. The Involvement of (Acyloxy)alkoxyphosphoranes.” J. Org. Chem., 54, 3049-3054 (1989).
    [61] D. L. Hughes, R. A. Reamer, J. J. Bergan, E. J. J. Grabowski. “A Mechanistic Study of the Mitsunobu Esterification Reaction.” J. Am. Chem. Soc., 110, 6487-6491 (1988).
    [62] G. Grynkiewicz, “Acylation in Presence of Diethyl Azodicarboxylate and Triphenylphosphine.” Rocz. Chem., 50, 1449-1451 (1976).
    [63] Martin, S. F. D., J. A. “Efficacious Modification of the Mitsunobu Reaction for Inversions of Sterically Hindered Secondary Alcohols.” Tetrahedron. Lett., 32, 3017-3020 (1991).
    [64] Saïah, M. B., M.; Antonakis, K. “The Use of Chloroacetic Acid in the Mitsunobu Reaction.” Tetrahedron. Lett., 33, 4317-4320 (1992).
    [65] D. Fanghänel, G. Timpe, V. Orthman. Organic Photochromes, Bureau, New York, Chap. 3 (1990).
    [66] M. D. Cohen, G. M. J. Schmidt. J. Chem. Soc., 1996 (1964).
    [67] M. D. Cohen, G. M. J. Schmidt, F. I. Sonntag. J. Chem. Soc., 2000 (1964).
    [68] G. M. J. Schmidt. J. Chem. Soc., 2014 (1964).
    [69] H. W. Kohlshutter. Z. Anorg. Allg. Chem., 105, 121 (1918).
    [70] K. Gnanaguru, N. Ramasubbu, N. K. Venkatesan, V. Ramamurthy. J. Org. Chem., 50, 2337 (1985).
    [71] N. Ramasubbu, K. Gnanaguru, K. Venkatesan, V. Ramamurthy. Can. J. Chem., 60, 2159 (1982).
    [72] M. M. Bhadbhade, G. S. Murthy, K. Venkatesan, V. Ramamurthy. Chem. Phys. Lett., 109, 259 (1984).
    [73] K. Gnanaguru, G. S. Murthy, K. Venkatesan, V. Ramamurthy. Chem. Phys. Lett., 109, 255 (1984).
    [74] K. Gnanaguru, N. Ramasubbu, K. Venkatesan, V. Ramamurthy. J. Photochem., 27, 355 (1984).
    [75] N. Ramasubbu, T. N. Guru, K. Venkatesan, V. Ramamurthy, C. N. R. Rao. J. Chem. Soc., Chem. Commun., 178 (1982).
    [76] H. Nakanishi, W. Jones, J. M. Thomas, Chem. Phys. Lett., 71, 44 (1980).
    [77] H. Nakanishi, W. Jones, J. M. Thomas, M. B. Hursthouse, M. Motevalli, J. Chem. Soc., Chem. Commun., 611 (1980).
    [78] W. Jones, H. Nakanishi, C. R. Theocharis, J. M. Thomas, J. Chem. Soc., Chem. Commun., 610 (1980).
    [79] J. M. Thomas. Nature, London, 289, 633 (1981).
    [80] H. Nakanishi, W. Jones, J. H. Thomas, M. B. Hksthouse, M. Motevalli. J. Phys. Chem., 85, 3636 (1981).
    [81] W. Jones, S. Ramdas, C. R. Theocharis, J. M. Thomas, N. W. Thomas. J. Phys. Chem., 85, 2594 (1981).

    Chapter 2
    [1] (a) H. Finkelmann, H. Ringsdorf, J. H. Wendorff. Makromol. Chem., 179,273 (1978). (b) K. Ichimura. Chem. Rev., 100, 1847 (2000).
    [2] K. Suzuki, H. Saito, M. Tokita, J. Watanabe. Polymer 46, 8313 (2005).
    [3] P. van de witte P, J. C. Galan, J. Lub. Liq. Cryst., 24, 819 (1998).
    [4] J. G. Meyer, R. Ruhmann, J. Sumpe. Macromolecules 33, 843 (2000).
    [5] A. Y. Bobrovsky, N. I. Boiko, V. P. Shibaev, J. Springer. Adv. Mater., 12,1180 (2000).
    [6] Y. Zhao, G. Yuan, P. Roche. Polymer 40, 3025 (1999).
    [7] A. Natansohn, P. Rochon, X. Meng, C. Barret, T. Buffeteau, S. Bonenfant, et al. Macromolecules 31, 1155 (1998).
    [8] S. Kurihara, S. Nomiyama, T. Nonaka. Chem. Mater., 13, 1992 (2001).
    [9] H. R. Kricheldof, D. F. Wulff. Polymer 39, 6145 (1998).
    [10] J. M. G. Cowie, T. Hinchcliffe. Polymer 37, 4937 (1996).
    [11] V. P. Shibaev, A. Bobrovsky, N. Boiko. Prog. Polym. Sci., 28, 729 (2003).
    [12] A. Y. Bobrovsky, N. I. Boiko, V. P. Shibaev. Polym. Sci. A., 40, 232 (1998).
    [13] C. Ruslim, K. Ichimura. J. Mater. Chem., 12, 3377 (2002).
    [14] H. Stegmeryer, K. J. Mainush. Naturwissenschaften 58, 599 (1971).
    [15] E. Sackman, S. Meiboom, L. C. Snyder, A. E. Meixner, R. E. Dietz. J. Am. Chem. Soc., 90, 3567 (1968).
    [16] H. K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, et al. J. Phys. Chem. B., 104, 7023 (2000).
    [17] J. H. Liu, C. D. Hsieh, H. Y. Wang. J. Polym. Sci. A., 42, 1075 (2004).
    [18] J. H. Liu, W. T. Chen, F. T. Wu. J. Polym. Res., 9, 251 (2002).
    [19] J. H. Liu, H. Y. Wang. J. Appl. Polym. Sci., 9, 789 (2004).
    [20] J. H. Liu, P. C. Yang. J. Appl. Polym. Sci., 91, 3693 (2004).
    [21] A. Y. Bobrovsky, N. I. Boiko, V. P. Shibaev. Liq. Cryst., 24, 489 (1998).
    [22] H. Hattori, T. Uryu. Liq. Cryst., 26, 1085 (1999).
    [23] M. Kašpar, V. Hamplová, S. A. Pakhomov, A. M. Bubnov, F. Guittard, H. Sverenyák, et al. Liq. Cryst., 24, 599 (1998).
    [24] M. Portugall, H. Ringsdorf, R. Zentel. Makromol. Chem., 183, 2311 (1982).
    [25] G. Rodekirch, J. Rübner, V. Zschuppe, D. Wolff, J. Springer. Makromol. Chem., 194, 1125 (1993).
    [26] J. M. G. Cowie, H. W. Hunter. Can. J. Chem., 73, 1811 (1995).
    [27] A. Hassnei, V. Alexanian. Tetrahedron. Lett., 4475 (1978).
    [28] B. Neises, W. Steglich. Angew. Chem. Int. Ed. Engl., 17, 522 (1978).
    [29] M. Kašpar, V. Hamplová, S. A. Pakhomov, A. M. Bubnov, F. Guittard, H. Sverenyák, et al. Liq. Cryst., 24, 599 (1998).
    [30] E. Chin, J. Goodby. Mol.Cryst. Liq. Cryst., 141, 311 (1986).
    [31] T. E. Mann, D. Lacey. Liq. Cryst., 27, 299 (2000).
    [32] O. Mitsunobu, M. Yamada. Bull. chem. Soc. Jpn., 4, 2380 (1967).
    [33] O. Mitsunobu. Synthesis, 1 (1981).
    [34] M. D. Ossowska-Chruściel. Liq. Cryst., 31, 1159 (2004).
    [35] D. L. Hughes. Org. Reactions., 42, 335 (1992).
    [36] N. L. Dirlam, B. S. Moore, F. J. Urban. J. Org. Chem., 52, 3587 (1987).
    [37] J. Lub, D. J. Broer, R. A. M. Hikmet, K. G. J. Nierop. Liq. Cryst., 18, 319 (1995).
    [38] A. Stohr, P. Strohriegl. Macromol. Chem. Phys., 199, 751 (1998).
    [39] J. S. Hu, B. Y. Zhang, D. S. Yao, A. J. Zhou. Liq. Cryst., 31, 393 (2004).

    [40] M. Brehmer, L. Lub, P. van de Witte. Adv. Mater., 10, 1438 (1998).
    [41] A. Y. Bobrovsky, N. I. Boiko, V. P. Shibaev. Adv. Mater., 12, 1180 (2000).
    [42] A.Y. Bobrovsky, N. I. Boiko, V. P. Shibaev, K. Schaumburg. Polym. Sci., Ser. A., 41, 107 (1999).
    [43] E. Mena, P. van de Witte, J. Lub. Liq. Cryst., 27, 929 (2000).
    [44] I. Dierking. “Textures of Liquid Crystals.” Weinheim: Wiley-VCH, ISBN 3-527-30725-7 (2003).
    [45] K. Hans, H. Rolf. “Handbook of liquid crystals.” Weinheim :Verlag Chemie, ISBN 0895730081 (1980).
    [46] Http://bly.colorado.edu/lcphysics/textures/.
    [47] C. B. McARDLE. “Side Chain Liquid Crystal Polymers.” Chap. 3, New York, NY, ISBN 0-216-92503-7 (1989).
    [48] P. J. Collings, M. Hird. “Introduction to Liquid Crystals Chemistry and Physics.” Chap. 3, Taylor and Francis, London, ISBN 0-7484-0643-3 (1997).
    [49] N. Tamaoki, A. V. Parfenov, A. Masaki, H. Matsuda. Adv. Mater., 9, 1102 (1997).
    [50] D. Demus, J. Goodby, G. Grey, H. Spiess, V. Vill, editors. “Handbook of liquid crystals.” New York, Wiley (1998).

    Chapter 3
    [1] N. Zettsu, T. Ubukata, T. Seki, K. Ichimura. Adv. Mater., 13, 1693-1697 (2001).
    [2] V. P. Shibaev, A. Y. Bobrovsky, N. I. Boiko. Prog. Polym. Sci., 28, 729-836 (2003).
    [3] S. J. Zilker, T. Bieringer, D. Haarer, R. S. Stein, J. W. van Egmond. Adv. Mater., 10, 855-859 (1998).
    [4] A. Stracke, J. H. Wendorff, D. Janietz, S. Mahlstedt. Adv. Mater., 11, 667-670 (1999).
    [5] C. Sanchez, R. Alcala. Appl. Phys. Lett., 78, 3944-3946 (2001).
    [6] Y. Zhao, S. Y. Bai, K. Asatryan, T. Galstian. Adv. Funct. Mater., 13, 781-788 (2003).
    [7] K. Kago, T. Seki, R. R. Schucke, E. Mouri, H. Matsuoka, H. Yamaoka. Langmuir, 18, 3875-3879 (2002).
    [8] K. H. Park, R. J. Twieg, R. Ravikiran, L. F. Rhodes, R. A. Shick, D. Yankelevich, A. Knoesen. Macromolecules, 37, 5163-5178 (2004).
    [9] J. A. Delaire, K. Nakatani. Chem. Rev., 100, 1817-1845 (2000).
    [10] D. Sainova, A. Zen, H. G. Mothofer, U. Asawapirom, U. Scherf, R. Hagen, T. Bierinqer, S. Kostromine, D. Neher. Adv. Funct. Mater., 12, 49-57 (2002).
    [11] S. W. Lee, S. Kim, B. Lee, W. Choi, B. Chae, S. B. Kim, M. Ree. Macromolecules, 26, 6527-6536 (2003).
    [12] W. C. Lee, J. T. Chen, C. S. Hsu. Liq. Cryst., 29, 907-913 (2002).
    [13] H. Finkelmann, G. Rehage. Adv. Polym. Sci., 60/61, 99 (1984).
    [14] V. P. Shibaev, N. A. Plate. Adv. Polym. Sci., 60/61, 173 (1984).
    [15] H. Finkelmann, H. Ringsdorf, J. H. Wendorff. Makromol. Chem., 179, 273 (1978).
    [16] K. Ichimura. Chem. Rev., 100, 1847 (2000).
    [17] Y. K. Han, D. Y. Kim, Y. H. Kim. Mol. Cryst. Liq. Cryst., 254, 445 (1994).
    [18] T. Fuhrman, J. H. Wendorff, in: W. Brostow, A. Collyer (Eds.) “Polymer Liquid Crystals.” Chapman & Hall, London (2000).
    [19] J. A. Delaire, K. Nakatani. Chem. Rev., 100, 1817 (2000).
    [20] (a) K. Ichimura, S. Furumi, S. Morino, M. Kidowaki, M. Nakagawa, M. Ogawa, Y. Nishiura. Adv. Mater., 12, 950 (2000). (b) S. Furumi, D. Janietz, M. Kidowaki, M. Nakagawa, S. Morino, J. Stumpe, K. Ichimura. Chem. Mater., 13, 1434 (2001).
    [21] K. Ichimura, H. Tomita, K. Kudo. Liq. Cryst., 20, 161 (1996).
    [22] (a) B. Sapich, J. Stumpe, H. R. Kricheldorf, A. Fritz, A. Schönhals. Macromolecules, 34, 5694 (2001). (b) B. Sapich, J. Stumpe, T. Krawinkel, H. R. Kricheldof. Macromolecules, 31, 1016 (1998).
    [23] M. Obi, S. Morino, K. Ichimura. Macromol. Rapid. Commun., 19, 643 (1998).
    [24] P. O. Jackson, M. O’Neill. Chem. Mater., 13, 694 (2001).
    [25] A. Natansohn, P. Rochon, M. Pézolet, P. Audet, D. Brown, S. To. Macromolecules, 27, 2580 (1994).
    [26] X. Meng, A. Natansohn, C. Barrett, P. Rochon. Macromolecules, 29, 946 (1996).
    [27] S. Ogiri, H. Nakamura, A. Kanazawa, T. Shiono, T. Ikeda, I. Nishiyama. Macromolecules, 32, 4806 (1999).
    [28] Z. Zheng, J. Xu, Y. Sun, J. Zhou, B. Chen, Q. Zhang, K. Wang. J. Polym. Sci. Part A: Polym. Chem., 44, 3210 (2006).
    [29] C. B. McArdle. in “Side Chain Liquid Crystal Polymers.” C. B. McArdle, Ed., Blackie & Son, Glasgow, p. 357 (1989).
    [30] U. Wiesner, N. Reynolds, C. Boeffel, H. W. Spiess. Makromol. Chem., Rapid Commun., 12,457 (1991).
    [31] (a) S. Hvilsted, F. Andruzzi, P. S. Ramanujam. Opt. Lett., 17, 1234 (1992); (b) P. S. Ramanujam, S. Hvilsted, F. Andruzzi. Appl. Phys. Lett., 62,1041 (1993).
    [32] K. Anderle, J. H. Wendorff, Mol. Cryst. Liq. Cryst., 243, 51 (1994).
    [33] M. Portugall, H. Ringsdorf, R. Zentel. Makromol. Chem., 183, 2311 (1982).
    [34] G. Rodekirch, J. Rübner, V. Zschuppe, D. Wolff, J. Springer. Makromol. Chem., 194, 1125-1135 (1993).
    [35] J. Lub, J. H. Van der Veen, E. Van Echten. Mol. Cryst. Liq.Cryst. Sci. Technol., Sect. A, 287, 205 (1996).
    [36] H. Ringsdorf, H. W. Schmidt. Makromol. Chem., 185, 1327 (1984).
    [37] C. T. Imric, F. E. Karasz, G. S. Attard. Macromolecules, 25, 1278 (1992).
    [38] C. T. Imric, F. E. Karasz, G. S. Attard. Macromolecules, 26, 545 (1993).
    [39] D. Stewart, C. T. Imric. Polymer, 37, 3419 (1996).
    [40] A. A. Craig, I. Winchester, P. C. Madden, P. Larcey, L. W.Hamley, C. T. Imrie. Polymer, 39, 1197 (1998).
    [41] V. Prasad. Liq. Cryst., 28, 145 (2001).
    [42] A. S. Angeloni, D. Caretti, C. Carlini, E. Chiellini, G. Galli, A. Altomare, R. Solaro, M. Laus. Liq. Cryst., 4, 513 (1989).
    [43] C. B. McARDLE. “Side Chain Liquid Crystal Polymers.” Chap. 3, New York, NY, ISBN 0-216-92503-7 (1989).
    [44] P. C. Yang, J. H. Liu. J. Appl. Polym. Sci., 91, 3693 (2004).
    [45] P. C. Yang, Y. H. Chiu, Suda. Y, J. H. Liu. J. Polym. Sci. Part A: Polym. Chem., (JPOL-A-06-1056, in press) (2007).
    [46] J. H. Liu, H. U. Wang. J. Appl. Polym. Sci., 91, 789 (2004).
    [47] J. Griffiths. “Photochemistry of azobenzene and its derivatives.” Chem. Soc. Rec., 1, 489 (1972).
    [48] M. Eich, J. H. Wendorff, B. Reck, H. Ringsdorf. Makromol. Chem. Rap. Commun., 8, 59 (1987).
    [49] T. Ikeda, O. Tsutsumi. Science, 268, 1873 (1995).
    [50] U. Wiesner, N. Reynolds, C. Boeffel, H. W. Spiess. Liq. Cryst., 11, 251 (1992).
    [51] T. Fischer, L. Lasker, J. Stumpe, S. G. Kostromin. J. Photochem. Photobiol. A., 80, 453 (1994).
    [52] Z. Sekkat, M. Buchel, H. Orendi, H. Menzel, W. Knoll. Chem. Phys. Lett., 220, 497 (1994).
    [53] T. Sasaki, T. Ikeda, K. Ichimura, J. Am.Chem. Soc., 116, 625 (1994).

    Chapter 4
    [1] S. D. Jacobs, et al. J. opt. Soc. Am., B5, 1962 (1988).
    [2] S. V. Belayev, M. I. Schadt, J. Funfschiling, N. V. Malimoneko, K. Schmitt. Jpn. J. Appl. Phys., 29, L634 (1990).
    [3] D. J. Broer, J. Lub, G. N. Mol. Nature, 378, 467 (1995).
    [4] T. J. Bunning, F. H. Kreuzer. Trends polym. Sci., 3, 318 (1995).
    [5] D. K. Yang, J. L. West, J. W. Doane. J. Appl. Phys., 76, 1331 (1994).
    [6] H. R. Kricheldorf, S. J. Sun, C. P. Chen, T. C. Chang. J. Polym. Sci. A: Polym. Chem., 35, 1611 (1997).
    [7] P. M. Peter. Nature, 391, 745 (1998).
    [8] B. Sapich, J. Stumpe, T. Krawinkel, H. R. Kricheldorf. Macromolecules, 31, 1016 (1998).
    [9] S. J. Sun, L. C. Liao, T. C. Chang. J. Polym. Sci. A: Polym. Chem., 38, 1852 (2000).
    [10] J. S. Hu, B. Y. Zhang, Y. G. Jia, S. Chen. Macromolecules, 36, 9060 (2003).
    [11] B. Bahadur. Liquid Crystals: Applications and Uses. World Scientific, Singapore (1991).
    [12] J. C. Mastrangelo, S. H. Chen. Macromolecules, 26, 6132 (1993).
    [13] M. Takashi, N. Kazuhiro, F. Keisuke. Polym.J., 29,309 (1997).
    [14] J. S. Hu, B.Y. Zhang, K. Sun, Q. Y. Li. Liq. Cryst., 30, 1267 (2003).
    [15] Y. Huai, K. Hirotsugu, K. Tisato. Liq. Cryst., 29, 1141 (2002).
    [16] J. H. Liu, F. C. Wu, T. H. Lin, A. Y. G. Fuh. Opt. Express, 12, 1857 (2004).
    [17] J. H. Liu, C. D. Hsieh, H. Y. Wang. J. Polym. Sci. Part A: Polym. Chem., 42, 1075-1092 (2004).
    [18] J. H. Liu, P. C. Yang, T. H. Lin, Y. J. Chen, C. H. Wu, A. Y. G. Fuh. Appl. Phys. Lett., 86, 161120 (2005).
    [19] J. H. Liu, P. C. Yang, Y. K. Wang, C. C. Wang. Liq. Cryst., 33, 237 (2006).
    [20] J. H. Liu, P. C. Yang. Polymer, 47, 4925 (2006).
    [21] S. Kurihara, S. Nomiyama, T. Nonaka. Chem. Mater., 12, 9-12 (2000).
    [22] S. Kurihara, S. Nomiyama, T. Nonaka. Chem. Mater., 13, 1992-1997 (2001).
    [23] G. D. Jaycox. J. Polym. Sci. Part A: Polym. Chem., 42, 566-577 (2004).
    [24] J. L. Zhou, X. F. Chen, X. H. Fan, C. X. Lu, Q. F. Zhou. J. Polym. Sci. Part A: Polym. Chem., 44, 6047-6054 (2006).
    [25] A. Y. Bobrovsky, N. I. Boiko, V. P. Shibaev. Liq. Cryst., 25, 393-401 (1998).
    [26] J. Lub, W. P. M. Nijssen, R. T. Wegh, I. De Francisco, M. P. Ezquerro, B. Malo. Liq. Cryst., 32, 1031-1044 (2005).
    [27] A. Y. Bobrovsky, N. I. Boiko, V. P. Shibaev. J. Photoch. Photobio. A., 138, 261-267 (2001).
    [28] P. V. D. Witte, J. C. Galan, J. Lub. Liq. Cryst., 24, 819-827 (1998).
    [29] A. Y. Bobrovsky, V. P. Shibaev. Liq. Cryst., 30, 671-680 (2003).
    [30] P. C. Yang, Y. H. Chiu, Suda. Y, J. H. Liu. J. Polym. Sci. Part A: Polym. Chem., (JPOL-A-06-1056, in press) (2007).
    [31] (a) T. Ishigami, K. Nakazato, M. Uehara, T. Endo. Tetrahedron. Lett., 10, 863 (1979). (b) R. F. Childs, B. Duffey, A. Mika-Gilaba. J. Org. Chem., 49, 4352 (1984). (c) Y. Shindo, K. Horie, I. Mita. J. Photochem., 26, 185 (1984).
    [32] J. Bolt, F. H. Quina, D. G. Whitten. Tetrahedron. Lett., 2595 (1976).
    [33] P. L. Egerton, E. M. Hyde, J. Trigg, A. Payne, P. Beynon, M. V. Mijovic, A. Reiser. J. Am. Chem. Soc., 103, 3859 (1981).
    [34] P. L. Egerton, E. Pitts, A. Reiser. Macromolecules, 14, 95 (1981).
    [35] V. Ramesh, R. G. Weiss. Mol. Cryst. Liq. Cryst., 135, 13 (1986).
    [36] L. Oriol, M. Piňol, J. L. Serrano, R. M. Tejedor. J. Photoch. Photobio. A., 155, 37 (2003).
    [37] Y. Nakayama, T. Matsuda. J. Polym. Sci. Part A: Polym. Chem., 43, 3324 (2005).
    [38] P. L. Egerton, E. Pitts, A. Reiser. Macromolecules, 14, 95 (1981).
    [39] M. D. Cohen, G. M. J. Schmidt, F. I. Sonntag. J. Chem. Soc., 86, 2000 (1964).
    [40] G. M. J. Schmidt. J. Chem. Soc., 86, 4 (1964).
    [41] W. L. Dilling. Chem. Rev., 83, 1 (1983).
    [42] M. Hasegawa. Chem. Rev., 83, 507 (1983).
    [43] E. Sackmann, J. Am. Chem. Soc., 93, 7088 (1971).
    [44] M. Zhang, G. B. Schuster. J. Am. Chem. Soc., 116, 4852 (1994).
    [45] S. N. Yarmolenko, L. A. Kutulya, V. V. Vashchenko, L. V. Chepeleva. Liq. Cryst., 16, 877 (1994).
    [46] B. L. Feringa, N. P. M. Huck, H. Van Doren, J. Am. Chem. Soc., 117, 9929 (1995).
    [47] C. Denekamp, B. L. Feringa. Adv. Mater., 10, 1080 (1998).
    [48] N. I. Boiko, L. A. Kutulya, Yu. A. Reznikov, T. A. Sergan, V. P. Shibaev. Mol. Cryst. Liq. Cryst., 251, 311 (1994).
    [49] A. Y. Bobrovsky, N. I. Boiko, V. P. Shibaev. Adv. Mater., 11, 1025 (1999).
    [50] Applied Photochromic Polymer Systems, ed. C. B. McArdle, Blackie & Son Ltd, New York (1992).
    [51] “Polymers as Electrooptical and Photo-optical Active Media.” ed. V. P. Shibaev, Springer-Verlag, Berlin, Heidelberg, p. 37 (1996).
    [52] M. Eich, J. H. Wendorff. J. Opt. Soc. Am. B, 7, 1428 (1990).
    [53] V. P. Shibaev, I. V. Yakovlev, S. G. Kostromin, S. A. Ivanov, T. I. Zverkova. Polymer. Sci. USSR., 32, 1478 (1990).
    [54] V. P. Shibaev, S. G. Kostromin, S. A. Ivanov. Polymer. Sci., Ser. A, 39, 118 (1997).
    [55] S. A. Ivanov, I. A. Yakovlev, S. G. Kostromin, V. P. Shibaev, L. Lasker, J. Stumpe, D. Kreysig. Makromol. Chem. Rapid Commun., 12, 709 (1991).
    [56] J. Stumpe, L. Lasker, Th. Fischer, S. Kostromin, S. Ivanov, V. Shibaev, D. Rumann. Mol. Cryst. Liq. Cryst, 253, 1 (1994).
    [57] D. Brown, A. Natansohn, P. Rochon. Macromolecules, 28, 6116 (1995).
    [58] P. Romanujam, N. Holme, S. Hvilsted. Appl. Phys. Lett., 68, 1329 (1996).
    [59] A. Natansohn, P. Rochon, X. Meng, C. Barret, T. Buffeteau, S. Bonenfant, M. Pezolet, Macromolecules, 31, 1155 (1998).
    [60]Y. Wu, Y. Demachi, O. Tsutsumi, A. Kanazava, T. Shiono, T. Ikeda. Macromolecules, 31, 1104 (1998).
    [61] L. T. Creagh, A. R. Kmetz. Mol. Cryst. Liq. Cryst., 24, 59 (1973).
    [62] K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, K. Aoki, Langmuir, 4, 1214 (1988).
    [63] N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, S. K. Tripathy. J. Mater. Chem., 9, 1941 (1999).
    [64] H. Ringsdorf, C. Urban, W. Knoll, M. Sawodny. Macromol. Chem., 193, 1235 (1992).
    [65] Y. Ren, Y. Tian, R. Sun, S. Xi, Y. Zhao, X. Huang. Langmuir, 13, 5120 (1997).
    [66] F. H. Kreuzer, “Polymers as Electrooptical and Photo-optical Active Media.” ed. V. P. Shibaev, Springer-Verlag, Berlin, Heidelberg, p. 111 (1996).
    [67] A. Petry, C. Brauchle, H. Leigeber, A. Miller, H.-P. Weitzel, F.-H. Kreuzer. Liq. Cryst., 15, 113 (1993).
    [68] A. Y. Bobrovsky, N. I. Boiko, V. P. Shibaev. Polymer. Sci., Ser. A, 40, 232 (1998).
    [69] A. Y. Bobrovsky, N. I. Boiko, V. P. Shibaev. Liq. Cryst., 25, 393 (1998).
    [70] A. Y. Bobrovsky, N. I. Boiko, V. P. Shibaev. Liq. Cryst., 26, 679 (1998).
    [71] N. I. Boiko, A. Y. Bobrovsky, V. P. Shibaev. Mol. Cryst. Liq. Cryst., 332, 2683 (1999).
    [72] A. Y. Bobrovsky, N. I. Boiko, V. P. Shibaev. Liq. Cryst., 26, 1749 (1999).
    [73] P. Van de Witte, J. C. Galan, J. Lub. Liq. Cryst., 24, 819 (1998).

    Chapter 5
    [1] H. R. Kricheldof, D. F. Wulff. Polymer 39, 6145 (1998).
    [2] C. Ruslim, K. Ichimura. J. Mater. Chem., 12, 3377 (2002).
    [3] S. Kurihara, S. Nomiyama, T. Nonaka. Chem. Mater., 13, 1992 (2001).
    [4] J. M. G. Cowie, T. Hinchcliffe. Polymer 37, 4937 (1996).
    [5] V. P. Shibaev, A. Bobrovsky, N. Boiko. Prog. Polym. Sci., 28, 729 (2003).
    [6] A. Y. Bobrovsky, N. I. Boiko, V. P. Shibaev. Polym. Sci. A., 40, 232 (1998).
    [7] C. Ruslim, K. Ichimura. J. Mater. Chem., 12, 3377 (2002).
    [8] H. Stegmeryer, K. J. Mainush. Naturwissenschaften, 58, 599 (1971).
    [9] E. Sackman, S. Meiboom, L. C. Snyder, A. E. Meixner, R. E. Dietz. J. Am. Chem.
    Soc., 90, 3567 (1968).
    [10] H. K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda. J. Phys. Chem. B, 104, 7023 (2000).
    [11] G. Gottarelli, M. Hibert, B. Samori, G. Solladié, G. P. Spada, R. Zimmermann. J. Am. Chem. Soc., 105, 7318 (1983).
    [12] C. Ruslim, K. Ichimura. J. Phys. Chem. B, 104, 6529 (2000).
    [13] T. Pfeuffer, K. Kürschner, P. Strohriegl. Macromol. Chem. Phys., 200, 2480 (1999).
    [14] N. Hoshino, Y. Matsuoka, K. Okamoto, A. Yamagishi. J. Am. Chem. Soc., 125, 1718 (2003).
    [15] J. H. Liu, C. D. Hsieh, H. Y. Wang. J. Polym. Sci. A, 42, 1075 (2004).
    [16] J. H. Liu, H. Y. Wang. J. Appl. Polym. Sci., 9, 789 (2004).
    [17] J. H. Liu, P. C. Yang. Liq. Cryst., 32, 539 (2005).
    [18] J. H. Liu, P. C. Yang. Liq. Cryst., 33, 237 (2006).
    [19] J. H. Liu, P. C. Yang, T.H. Lin, Y.J. Chen, C.H. Wu, Y.G. Fuh. Appl. Phys. Lett., 86, 161120 (2005).
    [20] J. H. Liu, P. C. Yang. Polymer, 47, 4925 (2006).
    [21] J. H. Liu, H. J. Hung, D. S. Wu, S. M. Hong, A. Y. G. Fuh. J. Appl. Polym. Sci., 98, 88 (2005).
    [22] S. Pieraccini, M.I. Donnoli, A. Ferrarini, G. Gottarelli, G. Licini, C. Rosini, S. Superchi, G.P. Spada. J. Org. Chem., 68, 519 (2003).
    [23] D. J. Broer, G.. N. Mol, J. A. M. M. van Haaren, J. Lub. Adv. Mater., 11, 573 (1999).
    [24] I. Dierking, L. L. Kosbar, A. Afzali-Ardakani, A. C. Lowe, G. A. Held, J. Appl. Phys., 81, 3007 (1997).
    [25] D. K. Yang, L. C. Chien, J. W. Doane, Appl. Phys. Lett., 60, 3102 (1992); see also Liquid Crystals in Complex Geometries, edited by G. P. Crawford, S. Žumer (Taylor and Francis, London, 1996), Chap. 5.
    [26] C. V. Rajaram, S. D. Hudson, L. C. Chien, Chem. Mater., 8, 2451 (1996).
    [27] K. E. J. Barrett, H. R. Thomas. “in Dispersion Polymerization in Organic Media.” edited by K. E. J. Barrett, Wiley, London, Chap. 4 (1975).

    Chapter 6
    [1] H. K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda. J. Phys. Chem. B., 104, 7023 (2000).
    [2] N. Tamaoki, A.V. Parfenov, A. Masaki, H. Matsuda. Adv. Mater., 9, 1102 (1997).
    [3] M. Brehmer, J. Lub, P. van de Witte. Adv. Mater., 10, 1438 (1998).
    [4] D. Demus, J. Goodby, G. Grey, H. Spiess, V. Vill (Eds), “Handbook of Liquid Crystals” Wiley, New York (1998).
    [5] D. J. Broer, J. Lub, G. N. Mol. Nature, 378, 467 (1995).
    [6] A. Boudet, C. Binet, M. Mitov, C. Bourgrette, E. Boucher. Eur. Phys. J. E., 2, 247 (2000).
    [7] R. A. M. Hikmet, H. Kemperman. Nature, 392, 476 (1998).
    [8] A. Lavernhe, M. Mitov, C. Binet, C. Bourgerette. Liq. Cryst., 28, 803 (2001).
    [9] C. W. Gray, P. A. Winsor. “Liquid Crystall and Plastics Crystalls.” Ellis Harwood, Chichester, England, Vol. 1 (1974).
    [10] P. G. de Gennes, J. Prost. “The Physics of Liquid Crystals.” p. 263-280, Clarendon Press, Oxford (1993).
    [11] S. Elston, R. Sambles (Eds). “The Optics of Thermotropic Liquid Crystals.” Taylor & Francis, London (1998).
    [12] R. A. Delden. “Controlling Molecular Chirality and Motion.” Chap. 3, Baarn, Holland; Electronic Version: ISBN 90-367-1609-3 (2002).
    [13] N. Tamaoki. Adv. Mater., 13, 1135 (2001).
    [14] P. van de Witte, M. Brehmer, J. Lub. J. Mater. Chem, 9, 2087 (1999).
    [15] A. Y. Bobrovsky, N. I. Boiko, V. P. Shibaev, J. Springer. Adv. Mater., 12, 1180 (2000).
    [16] C. Ruslim, K. Ichimura. J. Phys. Chem. B., 104, 6529 (2000).
    [17] (a) M. Irie, Chem. Rev., 100, 1685 (2000). (b) Y. Yokoyama, Chem. Rev., 100, 1717 (2000). (c) B. L. Feringa, R. A. van Delden, N. Koumura, E. M. Geertsema. Chem. Rev., 100, 1789 (2000). (d) K. Ichimura. Chem. Rev., 100, 1847 (2000).
    [18] E. Sackmann. J. Am. Chem. Soc., 93, 7088 (1971).
    [19] (a) S. Janicki, G. B. Schuster. J. Am. Chem. Soc., 117, 8524 (1995). (b) Y. Yokoyama, T. Sagisaka. Chem. Lett., 687 (1997).
    [20] (a) C. Denekamp, B. L. Feringa. Adv. Mater., 10, 1080 (1998). (b) K. Uchida, Y. Kawai, Y. Shimizu, V. Vill, M. Irie. Chem. Lett., 654 (2000). (c) T. Yamaguchi, T. Inagawa, H. Nakazumi, S. Irie, M. Irie. Chem. Mater., 12, 869 (2000).
    [21] (a) B. L. Feringa, N. P. N. Huck, H. A. van. Doren. J. Am. Chem. Soc., 117, 9929 (1995). (b) N. P. M. Huck, W. F. Janger, B. de Lange, B. L. Feringa. Science, 273, 1686 (1996).
    [22] S. Kurihara, S. Nomiyama, T. Nonaka. Chem. Mater., 12, 9 (2000).
    [23] S. Kurihara, S. Nomiyama, T. Nonaka. Chem. Mater., 13, 1992 (2001).
    [24] C. Ruslim, K. Ichimura. Adv. Mater., 13, 37 (2001).
    [25] C. Ruslim, K. Ichimura. Adv. Mater., 13, 641 (2001).
    [26] J. H. Liu, P. C. Yang. J. Appl. Polym. Sci., 91, 3693 (2004).
    [27] J. H. Liu, H. Y. Wang. J. Appl. Polym. Sci., 91, 789 (2004).
    [28] T. Yoshioka, T. Ogata, A.M. Zahangir, T. Nonaka, S. Kurihara. Liq. Cryst., 31, 15 (2004).
    [29] J. H. Liu, F. T. Wu. J. Polym. Res., 11, 43 (2004).
    [30] J. H. Liu, C. D. Hsieh. J. Appl. Polym. Sci., 99, 2443 (2006).
    [31] J. H. Liu, P. C. Yang. Liq. Cryst ., 32, 539 (2005).
    [32] J. H. Liu, P. C. Yang, A. Y. G. Fuh. Appl. Phys. Lett., 86, 161120 (2005).
    [33] J. H. Liu, H. J. Hung. Liq. Cryst., 32, 133 (2005).
    [34] H. Baessler, M. M. Labes. J. Chem. Phys., 52, 631 (1970).
    [35] G. Solladie, R. Zimmermann. Angew. Chem., int. Ed. Engl., 23, 348 (1984).
    [36] R. P. Lemieux. Acc. Chem. Res., 34, 845 (2001).
    [37] G. Gottarelli, G.P. Spada. In Materials-Chirality, M.M. Green, R.J.M. Nolte, E.W. Meijer (Eds), p. 425, Volume 24 of Topics in Stereochemistry, Wiley, Hoboken, NJ (2003).
    [38] N. Isaert, B. Soulestin, J. Malthete. Mol. Cryst. Liq. Cryst., 37, 321 (1976).
    [39] G. W. Gray, D. G. McDonald, Mol. Cryst. Liq. Cryst. Lett., 34, 211 (1977).
    [40] P. J. Collings, M. Hird. “Introduction to Liquid Crystals Chemistry and Physics.” Chap. 6, Taylor and Francis, London, ISBN 0-7484-0643-3 (1997).
    [41] J. Griffiths. “Photochemistry of azobenzene and its derivatives.” Chem. Soc. Rec., 1, 489 (1972).
    [42] A. Y. Bobrovsky, N. I. Boiko, V. P. Shibaev, Mol. Cryst. Liq. Cryst., 363, 35 (2001).
    [43] C.B. McArdle (Ed.). “Applied Photochromic Polymer Systems.” Blackie, London (1992).
    [44] S. N. Yarmolenko, L. A. Kutulya, V. V. Vashchenko, L. V. Chepeleva. Liq. Cryst., 16, 877 (1994).
    [45] A. Y. Bobrovsky, N. I. Boiko, V. P. Shibaev. Liq. Cryst., 25, 393 (1998).
    [46] M. Brehmer, J. Lub, P. van de Witte. Adv. Mater., 10, 1438 (1998).
    [47] Y. K. Yarovoy, M. M. Labes. Mol. Cryst. Liq. Cryst., 270, 101 (1995).
    [48] M. P. Cohen, G. M. J. Schmidt. J. Am. Chem. Soc., 86, 1996 (1964).
    [49] A. Y. Bobrovsky, N. I. Boiko, V. P. Shibaev. Mol. Cryst. Liq. Cryst., 363, 35 (2001).
    [50] A. Y. Bobrovsky, N. I. Boiko, V. P. Shibaev. Adv. Mater., 12, 1180 (2000).
    [51] A. Y. Bobrovsky, N. I. Boiko, V. P. Shibaev, J. Springer. Liq. Cryst., 28, 919 (2001).
    [52]. A. Y. Bobrovsky, N. I. Boiko, V. P. Shibaev. Liq. Cryst., 25 ,679 (1998).
    [53] S. Pieraccini, S. Masiero, G. P. Spada, G. Gottarelli. Chem. Commun., 598-599 (2003).
    [54] S. V. Serak, E. O. Arikainen, H. F. Gleeson, V. A. Grozhik, J. P. Guillou, N.A . Usova. Liq. Cryst., 29, 19 (2002).

    Chapter 7
    [1] H. Coles. “Handbook of Liquid Crystals.” Vol. 2A, D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, V. Vill (Eds), p. 365, VCH, Weinheim (1998).
    [2] M. Brehmer, J. Lub, P. van de Witte. Adv. Mater., 10, 1438 (1998).
    [3] C. Ruslim, K. Ichimura. J. Phys. Chem. B., 104, 6529 (2000).
    [4]. A. Y. Bobrovsky, N. I. Boiko, V. P. Shibaev. Liq. Cryst., 25, 679 (1998).
    [5] Y. K. Yarovoy, M.M. Labes. Mol. Cryst. liq. Cryst., 270, 101 (1995).
    [6] T. Ikeda, S. Horiuchi, D.B. Karanjit, S. Kurihara, S. Tazuke. Macromolecules, 23, 36 (1990).
    [7] T. Sasaki, T. Ikeda, K. Ichimura. Macromolecules, 25, 3807 (1992).
    [8] T. Ikeda, O. Tsutsumi. Science, 268, 1873 (1995).
    [9] A. Shisido, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, N. Tamai. J. Phys. Chem. B, 101, 2806 (1997).
    [10] S. Kurihara, A. Sakamoto, T. Nonaka. Macromolecules, 31, 4648 (1998).
    [11] O. Tsutsumi, T. Shiono, T. Ikeda, G. Galli. J. Phys. Chem. B, 101, 1332 (1997).
    [12] O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, L.-S. Park. Phys. Chem. Chem. Phys., 1, 4219 (1999).
    [13] A. Shishido, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, N. Tamai. J. Am. Chem. Soc., 119, 7791 (1997).
    [14] S. Kurihara, S. Nomiyama, T. Nonaka. Chem. Mater., 12, 9 (2000).
    [15] H.-K. Lee,A.Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, B. Lee. J. Appl. Phys., 86, 5927 (1999).
    [16] S. Kurihara, S. Nomiyama, T. Nonaka. Chem. Mater., 13, 1992 (2001).
    [17] C. Ruslim, K. Ichimura. Adv. Mater., 13, 37 (2001).
    [18] C. Ruslim, K. Ichimura. Adv. Mater., 13, 641 (2001).
    [19] I. Dierking. “Textures of Liquid Crystals.” Weinheim, Wiley-VCH, ISBN 3-527-30725-7 (2003).
    [20] J. M. Ruxer, G. Solladie, S. Candau. Mol. Cryst. Liq. Cryst. 41, 109 (1978).
    [21] G. Gottarelli, B. Samori, C. Stremmenos, G. Torre. Tetrahedron 37, 395 (1981).
    [22] (a) M. Hibert, G. Solladie. Mol. Cryst. Liq. Cryst., 64, 211 (1981). (b) M. Hibert, Thèse de Doctorat, Strasbourg (1981). (c) P. Seuron, Thèse de Doctorat, Strasbourg (1979).
    [23] G. Friedel. Ann. Phys., Paris, 18, 273 (1922).
    [24] H. Stegemeyer, K. J. Mainush. Nafurwissenschaffen 58, 599 (1971).
    [25] G. Gottarelli, P. Mariani, G. P. Spada, G. Samori, G. Solladie, M. Hibert. Tetrahedron, 39, 1337 (1983).
    [26] E. H. Korte, B. Schrader, S. J. Bualeck. Chem. Res., Synop. 236 (1978).
    [27] C. Rosini, G. P. Spada, G. Proni, S. Masiero, S. Scamuzzi. J. Am. Chem. Soc., 119, 506 (1997).
    [28] (a) J. P. Penot, J. Jacques, J. Billard, Tetrahedron. Lerr., 4013 (1968). (b) E. H. Korte. Appl. Specfrosc., 32, 568 (1978).
    [29] J. M. Ruxer, G. Solladie, S. J. Candau. Chem. Res. Synop., 6L (1978).
    [30] G. Gottarelli, B. Samori, C. Fuganti, C. Grasselli. J. Am. Chem. Soc., 103, 471 (1981).
    [31] H.-K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, B. Lee. Chem. Mater., 10, 1402 (1998).

    Chapter 8
    [1] Y. Boulignand. J. Phys. 34, 603 (1973).
    [2] A. W. Dejeu, G. Verteugen. “In Thermotropic Liquid Crystals-Fundamentals” Springer Verlag, Berlin (1977).
    [3] D. K. Yang, J. L. West, L. C. Chien, J. W. Doane, J. Appl. Phys., 76, 1331 (1994).
    [4] S. T. Wu, D. K. Wu. “Reflective Liquid Crystal Displays” Wiley, New York, (2001).
    [5] A. Hochbaum, Y. Jiang, L. Li, S. Vartak, S. Faris, SID Tech. Digest., 30, 1063 (1999).
    [6] B. Taheri, A. F. Munoz, P. Palffy-Muhoray, R. Twieg, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 358, 73 (2001).
    [7] Y. Huang, Y. Zhou, S. T. Wu, Appl. Phys. Lett., 88, 011107 (2006).
    [8] P. G. de Gennes, J. Prost. “The Physics of Liquid Crystals” 2nd ed. Clarendon, Oxford (1993).
    [9] J. Lub, D. J. Broer, R. A. M. Hikmet, K. G. J. Nierop. Liq. Cryst., 18, 319 (1995).
    [10] D. J. Broer, J. Lub, G. N. Mol, Macromol. Symp., 117, 33 (1997).
    [11] D. J. Broer, J. Lub, G. N. Mol, Nature, London, 378, 467 (1995).
    [12] J. Lub, D. J. Broer, P. van de Witte, Prog. Org. Coat., 45, 211 (2002).

    下載圖示 校內:2008-03-27公開
    校外:2010-03-27公開
    QR CODE