簡易檢索 / 詳目顯示

研究生: 曾琳雅
Tzeng, Lin-Ya
論文名稱: 銀-鉭系波洛斯凱特型光觸媒用於水分解製氫之效能
The Performance of of Ag-Ta Perovskite-type Photocatalysts for Preparing Hydrogen via Water Splitting
指導教授: 翁鴻山
Weng, Hung-Shan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 136
中文關鍵詞: 鉭酸銀溶膠凝膠法水分解光觸媒
外文關鍵詞: water splitting, AgTaO3, sol-gel method, photocatalyst
相關次數: 點閱:225下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   利用光能進行高效率水分解製氫的關鍵在於光觸媒的研發。光觸媒的研發,包括尋找新觸媒及改良原有的觸媒。後者可以藉由減小粒徑、增加觸媒表面積、負載其它金屬或金屬氧化物及與異元素摻混將表面化學結構改質來增加光觸媒的反應活性。

      本研究是針對以激發銀-鉭系波洛斯凱特型光觸媒在紫外光照射下催化水分解反應,進行初步的研究。觸媒是採用固態法與溶膠凝膠法兩種方法來製備,另外再對觸媒摻入不同劑量的鑭與含浸不同比例的氧化鎳進行化學改質。分別探討觸媒對水分解產生氫氣的活性影響。觸媒以X-光繞射分析、掃瞄式電子顯微鏡和紫外光可見光光譜儀作物化特性之鑑定。

      根據X-光繞射分析顯示,以固態法與溶膠凝膠法製備的觸媒均具有良好的晶相。觀察SEM圖,可看出使用溶膠凝膠法製備的觸媒顆粒較固態法製備的小且均勻。由UV-Vis吸收光譜可看出,銀-鉭系波洛斯凱特型觸媒會吸收紫外光。

      以製得的觸媒進行光催化水分解反應,發現以溶膠凝膠法製備的觸媒較固態法製備的活性高。以等比例的銀-鉭為起始原料、檸檬酸為分散劑,使用溶膠凝膠法並煅燒到850℃所製得的AgTaO3觸媒(SG-CA-850)活性最好,產生氫氣的速率為4.47 μmol/hr‧gcat。若在其上負載1 wt%NiO,可進一步提升其活性,氫氣的生成速率可達9.31 μmol/hr‧gcat。

      To efficiently split water for hydrogen generation relies heavily on the development and design of light-driven photocatalysts including finding new catalysts and improve the old catalysts. The latter can be improved by decreasing the particle size, increasing the surface area , loading metal oxide and doping heteroatom. Suitable modification of the surface sites might increase the photocatalytic activity of the catalyst.

    In this study, AgTaO3 catalysts were prepared by solid-state reaction method and sol-gel method and were further modified through loading NiO and doping La. The performances of the prepared catalysts for water splitting under UV light irradiation were investigated. The effects of different preparation parameters on the photocatalytic activities of the catalysts were also studied. The catalysts were characterized by using powder X-ray diffractometer (XRD), scanning electron spectroscope (SEM), ultravillet-visible spectrophotometer (UV-Vis). The photocatalytic reaction was carried out in a Pyrex reactor with 400 W high pressure mercury lamp as UV light source.

      All of the AgTaO3 absorb UV light catalysts prepared by solid-state reaction and sol-gel methods were fully crystallized to form Perovskite-type phases after being calcinated at a temperature about 850℃. SEM shows that the particles sizes of catalysts prepared by the sol-gel method are far smaller than those prepared by the solid-state reaction method.

    For water splitting, AgTa O3 catalysts prepared by sol-gel method showed higher activities than those prepared by solid-state reaction method. AgTaO3 catalysts prepared by sol-gel method and calcined to 850℃ had the highest activity( Average rate of hydrogen generation = 4.47 μmol/hr‧gcat.). When this catalyst was further loaded with NiO, a loading of 1 wt % would give the best performance ( Rate of H2 evolution = 9.31 μmol/hr‧gcat. ).

    中文摘要-----------------------------------------Ⅰ 英文摘要----------------------------------------Ⅲ 誌謝--------------------------------------------Ⅴ 目錄---------------------------------------------Ⅵ 表目錄-------------------------------------------Ⅹ 圖目錄-------------------------------------------ⅩⅡ 第一章 緒論--------------------------------------1 1-1 前言-----------------------------------------1 1-2 太陽能的介紹---------------------------------2 1-3 奈米粒子的基本性質---------------------------5 1-4 光觸媒介紹-----------------------------------8 1-5 奈米光觸媒-----------------------------------9 1-6光觸媒分解水之反應原理-----------------------10 1-7 研究動機及目的------------------------------16 第二章 文獻回顧---------------------------------19 2-1 溶膠凝膠法----------------------------------19 2-1-1 前言--------------------------------------19 2-1-2 溶膠凝膠定義------------------------------19 2-1-3 溶膠凝膠製程之原理------------------------21 2-1-4 溶膠凝膠法反應變因及影響------------------24 2-1-5 Pechini Process---------------------------26 2-1-6 溶膠凝膠技術之應用------------------------28 2-1-7 溶膠凝膠製程之優缺點----------------------29 2-2 固態反應法----------------------------------30 2-2-1 固態反應機構------------------------------30 2-2-2 固態反應法之優缺點------------------------31 2-3 波洛斯凱特型觸媒之簡介及發展----------------32 第三章 觸媒製備及晶相型態鑑定-------------------35 3-1 觸媒製備------------------------------------35 3-1-1製備AgTaO3---------------------------------36 3-1-2製備 AgTaO3:La-----------------------------40 3-1-3含浸NiO/AgTaO3-----------------------------41 3-2 觸媒晶相鑑定--------------------------------43 3-2-1 實驗方法----------------------------------43 3-2-2 結果與討論--------------------------------43 3-3 觸媒顆粒之型態------------------------------53 3-3-1 實驗方法----------------------------------53 3-3-2 結果與討論--------------------------------54 3-4 觸媒能隙之鑑定------------------------------67 3-4-1 實驗方法----------------------------------67 3-4-2 結果與討論--------------------------------68 第四章 觸媒水分解效能測試-----------------------76 4-1 前言----------------------------------------76 4-2 實驗設備與裝置------------------------------76 4-2-1 實驗設備----------------------------------76 4-2-2 實驗裝置----------------------------------77 4-3 光催化產氫之測試----------------------------78 4-3-1以固態法製備之AgTaO3觸媒進行水分解測試-----78 4-3-2以溶膠凝膠法製備之AgTaO3觸媒進行水分解測試-81 4-3-3以AgTaO3:La觸媒進行水分解測試--------------83 4-3-4以NiO/AgTaO3觸媒進行水分解測試-------------84 4-4 結果與討論----------------------------------86 4-4-1以不同方法製備的AgTaO3觸媒活性之比較-------86 4-4-2 觸媒含浸NiO之效應-------------------------88 4-4-3 觸媒摻入La之效應--------------------------89 第五章 結論與未來研究方向----------------------108 5-1 結論---------------------------------------108 5-2 未來研究方向-------------------------------110 參考文獻---------------------------------------112 附錄一-----------------------------------------116 附錄二-----------------------------------------118 自述-------------------------------------------136

    [1] 吳國卿, 董玉蘭, 化工資訊, 42, 1999. 5.
    [2] 蔣孝澈, 陳光龍, 化工, 第四十六卷第三期, 67, 1999.
    [3] Kudo A, Kato H, Tsuji I, CHEMISTRY LETTERS, 33(12), 1534-1539, 2004.
    [4] 南區奈米科技K-12教育發展中心,奈米科技─基礎、應用與實作,高立圖書有限公司,2005.
    [5] 陳慧英,,化工技術,無機薄膜之製備與應用專
    輯,11月號,80期,1999.
    [6] J. Livage and C. Sanchez, J. Non-Cryst. Solids, 145,11, 1992.
    [7] C. J. Brinker and G. W. Scherer, Academic Press, New York, p.839, 1990.
    [8] M. Kakihana, J. Sol-Gel Sci. Tech. 6 , 7, 1996.
    [9] 馬振基,奈米材料科技原理與應用,全華科技圖書股份有限公司,2003.
    [10] L. W. Tai and P. A. Lessing, J. Mater. Res. 7-2, 502, 1992.
    [11] L. W. Tai and P. A. Lessing, J. Mater. Res. 7-2, 511, 1992.
    [12] M. Gugliemi and G. Carturan, J. Non- Crystalline Solids 100, 16, 1988.
    [13] H.Schmidt, J. Non-Crystalline Solids 100, 51, 1988.
    [14] M. P. Pechini, U. S. Pat. No.3 231 328, 1966.
    [15] D. Hennings and W. Mayr, J. Solid State Chem. 26, 329, 1978.
    [16] M. P. Pechini, U. S. Patent No. 3,330, 697, 1967.
    [17] W. Jander, Z. Anorg. Allg. Chem. (in Ger) 163, 1, 1927.
    [18] A. M. Ginstling and B. I. Brounshtein, J. Appl. Chem. USSR, 23,
    1327, 1950.
    [19] G. Valensi, C. R. Hebd. Seances Acad, Sci. (in Fr.) 203 , 309, 1936.
    [20] P. K. Gallagher, D. W. Johnson, Jr., J. P. Remeika, F. Schrey, L. E. Trimble, E. M. Vogel, R. J. H. Voorhoeve, Mater. Res. Bull., 10, 529, 1975.
    [21] 余樹楨,晶體之結構與性質,渤海堂文化公司印行,1989.
    [22] 沈孝宗, 國立成功大學化工研究所博士論文, 1998.
    [23] C. N. R. Rao, J. Gopalarkrishnan, K. Vidyasagar, Indian J. Chem. Sect. A,23A, 265, 1984.
    [24] R. J. H. Voorhoeve, J. P. Remeika, L. E. Trimble, Ann. N. Y. Acad. Sci,272, 3, 1976.
    [25] W. F. Chu, F. J. Rohr, Solid State Ionics, 28-30, 1540, 1988.
    [26] T. Nakamura, M. Misono, Y. Yoneda, Bull. Chem. Soc. Jpn., 55, 394, 1982.
    [27] T. Nakamura, M. Misono, Y. Yoneda, J. Catal, 83, 151, 1983.
    [28] 黃婉婷, 國立成功大學化工研究所碩士論文, 2000.
    [29] 胡維民, 國立成功大學化工研究所碩士論文, 2002.
    [30] 柯子真, 國立成功大學化工研究所碩士論文, 2003.
    [31] 徐菁卿, 國立成功大學化工研究所碩士論文, 2004.
    [32] Kudo A, Kato H, Kobayashi H, J. Phys. Chem. B, 106, p.12441-12447, 2002.

    下載圖示 校內:立即公開
    校外:2006-07-26公開
    QR CODE