| 研究生: |
黃崧銘 Huang, Sung-Ming |
|---|---|
| 論文名稱: |
各類高空短暫發光現象的超低頻與極低頻至甚低頻電波特性 ULF and ELF/VLF Electromagnetic Signatures of Transient Luminous Events |
| 指導教授: |
許瑞榮
Hsu, Rue-Ron |
| 共同指導教授: |
陳炳志
Chen, Alfred B. 蘇漢宗 Su, Han-Tzong |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 156 |
| 中文關鍵詞: | 高空短暫發光現象 、閃電 、超低頻磁場訊號 、極低頻至甚低頻電磁場訊號 |
| 外文關鍵詞: | Transient Luminous Events, Lightning, ULF magnetic field, ELF/VLF electromagnetic field |
| 相關次數: | 點閱:76 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高空短暫發光現象(Transient Luminous Events, TLEs)是近十年來成功大學天文實驗室的重點研究項目,自2001年起團隊每年在台灣進行例行的地面觀測,捕捉鄰近地區的高空短暫發光現象,2004年台灣的第二顆自主衛星”福爾摩沙衛星二號”升空,除了搭載白天遙測用的光學觀測設備,在夜晚也有一套科學酬載"高空閃電影像儀"(ISUAL),自太空觀測全球高空短暫發光現象的光學和光譜訊號。直到現在,地面和星載觀測仍在進行,並累積了數萬筆的觀測結果。但是,這些光學和光譜資料,並不能直接對應於引發紅色精靈(sprite)、精靈暈盤(halo)和淘氣精靈(elve)等事件的閃電放電,或更進一步反演如:紅色精靈電流(sprite current)和巨大噴流(gigantic jet)等事件本身自有的放電現象。因此,拓展觀測的資料類型是必要地;另一方面,閃電放電中能量最高的回擊電流,因為通道長度(數公里到十數公里)和放電時間(數十微秒內)的關係,輻射的主要能量集中在超低頻(ULF)至甚低頻(VLF)的無線電頻帶中。這波段的電磁場訊號,恰小於電漿頻率,而可以在地表和低電離層間不斷反射前進,達到遠距偵測訊號的效果。綜合上述論點,量測超低頻至甚低頻的電磁場訊號,已成為團隊的首要目標。第一座超低頻磁場量測系統,建立於2003年,並在2009年重新進行校正和系統改進;第二座極低頻(ELF)至甚低頻電磁場量測系統,則於2009設立,提供了我們較高頻率的電磁場訊號,以解析不同性質的放電現象。
超低頻磁場紀錄系統於2009年進行改進前,有安裝一訊號調節器,將紀錄的頻段限制於較低頻(<100赫茲)的部分,雖然可偵測的距離因此增加,調節器本身卻有不連續的相位變化。由訊號產生器實際驗證後,發現有約9毫秒的時間誤差,這對於以毫秒為發光時間單位的高空短暫發光現象是有相當地影響。因此,我們以一基礎的訊號重建法進行修正,發現不論是訊號產生器的輸出波形或ISUAL觀測的紅色精靈磁場訊號,都能將這時間偏差予以修正。此外,修正後的紅色精靈訊號,有著較短的放電時間和較強的振幅,當由訊號反演的電荷矩和影像亮度進行線性比較時,也有著更接近真實的截止電荷矩和較高的相關係數。
2010年8月時,我們的地面光學觀測系統在6小時內紀錄到超過100個高空短暫發光現象,其中,14個事件被確認為巨大噴流,且有著清楚的光學影像和超低頻與極低頻至甚低頻的電磁場訊號紀錄。這是第一次有機會對巨大噴流進行詳細的訊號分析,在與光學畫面比對後,我們發現每個光學階段都有對應的放電訊號,包含:起始閃電、前導噴流、完整噴流和後續噴流,且除了光學型態外,也可以從發光時間,完整噴流與後續噴流的電流強度來判斷巨大噴流的型態。此外,除了Su et al. [2003]中辨識的樹型(tree-like)和蘿蔔型(carrot-like)巨大噴流,在這次觀測裡,不論光學型態、發光時間或電磁場訊號,都顯示了一種新型的混合型(tree-carrot-like)巨大噴流。
最後,我們比對了2009年6月至2012年6月,這三年間的所有ISUAL高空短暫發光現象的電磁場訊號,藉此來探討各種事件的基本電磁場特性。從對應的訊號中,發現紅色精靈電流(sprite current)的比例在所有紅色精靈中達到19%,約是過去研究的2倍[Cummer et al. 2003],推測可能當閃電強度越強時,紅色精靈電流出現的比例也越高,因此,ISUAL較高的觸發條件,導致了較高比例的紅色精靈電流。另外,我們發現在距離測站6千公里的範圍內,約有38%的藍色噴流有相關的甚低頻電磁場輻射,並類似於narrow bipolar events。在探討各類型高空短暫發光現象的訊號特性上,我們以三種方法定量、定性地討論了它們的差異。首先是可偵測率,基本上,大部分類型的事件,可偵測範圍差異不大(90%的可偵測範圍約達4到6千公里),只有精靈暈盤的相關事件,有著明顯較遠的偵測距離(90%的可偵測範圍達1萬公里)。在分析了它們的波形後,發現是因較強的訊號振幅,導致較遠的可偵測範圍。第二點的極性分析上,負閃電比例由0%的紅色精靈上升至96%的淘氣精靈。淘氣精靈居然由如此高比例的負閃電造成,這在過去的文獻中,是不曾出現過的。更特別的是,事件發生於陸地和海洋與海陸交界的比例,也會隨著不同類型的高空短暫發光現象而變化。最後,我們以每1千公里為單位,取出區間內的各種事件,分別計算其訊號的平均波形,以此探討在相同區間下,不同類型的高空短暫發光現象在放電特性上的不同。結果出乎意料,幾乎所有類型的事件,都擁有類似的訊號波形,只有紅色精靈的放電訊號,有著較長的上升和下降時間,並反應在200赫茲以下的頻譜分布。
In the past decade, transient luminous events (TLEs) have been the main research focus of the TLE group at the Physics Department, NCKU. Since 2001, we have routinely carried out ground TLE campaigns in Taiwan and have performed a global survey of TLEs using the ISUAL payload onboard the FORMOSAT-2 satellite since 2004. Till now, most of TLE research efforts have mainly concentrated on analyzing the large number of the ground and the ISUAL recorded TLEs using the optical and the spectral data. The occurrence of TLEs, including sprite, elve, halo, blue jet and gigantic jet, is known to be closely linked to the electric discharges in thunderclouds. However, the optical and spectral analyses provide little insight into the characteristics of the electric discharge processes that induce the TLEs. Because the lightning discharges are known to radiate the bulk of electromagnetic energy between the ultra low frequency (ULF) and the very low frequency (VLF) bands, the sferics emitted by lightning in these wavelengths can propagate in the Earth-ionosphere waveguide over a long distance with low attenuation. Therefore, in order to facilitate a better understanding of the electric discharges behind the TLE phenomena and to expand our observational capability, an ULF and an ELF/VLF radio recording systems have been installed in low electromagnetic noise sites, which locate at the Lulin Observatory and the Cingcao Elementary School in Tainan City, respectively.
In 2009, we re-built and re-calibrated the previous existing Lulin ULF station and expand the detection frequency range of the system to better monitor the sferics from the lightning return strokes and the continuing current. Shortly, a second Cingcao ELF/VLF recording system was added in late 2009 to obtain a higher time resolution sferic data for resolving the electric processes in TLE-associated discharges. With both systems, we have the capability to monitor the sferics emitted by the electric discharges that produced the observed TLEs and to infer their electromagnetic signatures. The Lulin ULF sferics recorded before 2009 suffered from phase distortions that imparted by a hardware signal modulator, which was used to filter out the usually intense 60 Hz power grid noise. In our in laboratory testing, it was found that the signal modulator incurred ~9 milliseconds of time delay on the sferics. In order to render the hardware notch-filtered sferic data being useful again, a simple signal reconstruction method was used to re-process the notch-filtered sferics. After the reconstruction, the sferics were found to contain less ringing, regain some of their lost amplitude, and more importantly have the correct event time. The fairness and reliability of the signal reconstruction method were checked using a few laboratory-generated waveforms and the results indicate that method is quite robust. With the reconstructed sprite-associated sferics, we also found a tight linear correlation between the charge moment change of the sprite-inducing CGs and the brightness of sprites. Furthermore, the threshold of the CG discharges needed to initiate sprites is also inferred and the result is generally in agreement with the accepted value.
With the renovated Lulin ULF and the newly installed Cingcao ELF/VLF sferic recording systems operate concurrently with the ground TLE observation campaigns and the ISUAL experiment onboard the FOMOSAT-2 satellite, valuable TLE-associated data are collected. The first notable opportunity was the observation of typhoon Lionrock on 31August 2010. About one hundred TLEs were observed to occur over this typhoon, among them fourteen negative gigantic jets were found to have clearly analyzable optical, ULF, and ELF/VLF data. For each GJ sferic, the signals associate with the observed optical processes, including the initiating lightning, the leading jet, the fully-developed jet (the surge current), and the trailing jet (the continuing current) were found. Furthermore, quantitative parameters of the initiating lightning, the surge current and the continuing current were inferred. These physical parameters are found to be closely linked to the morphologies, including the “tree-like”, the “carrot-like” and a newly found hybrid form called the “tree-carrot-like, of the negative gigantic jets.
Finally, to obtain the electromagnetic signatures of the TLE-associated discharges, the sferics associate with various groups of TLEs are analyzed in detail. In the global survey of TLEs, ISUAL has recorded more than ten thousand events since late 2009. From analyzing the sferics and the ISUAL spectrophotometer/array photometer data associate with pure sprites, the percentage of sprites with a sprite current is found to twice of the previous reported value [Cummer et al. 2003]. We also discovered the sferics associate with blue jets for the first time. The impulsive characteristics of the blue jet-associated sferics indicate that they may be closely linked to the narrow bipolar events (NBEs). In depth analyses, the detectability, the polarity distribution, and the characteristics of waveforms are all studied. The sferic detectability range for each group of TLEs is quite similar; the 90% sferic detectable range is 4-6 Mm typically. Among the TLE groups, only the sferics associate with halo have the farthest detectable range, since they tend to have larger amplitude. The results for the TLE polarity distribution are quite surprising. The elves are dominated by negative discharges (96%). In the well-organized Table 5 3, the negative event ratio increases monotonically across the TLE groups from 0% for the sprites to 96% for the elves. Furthermore, the polarity distribution of the causative discharges was also found to be related to their occurrence ratios over the land, the oceanic and the coastal areas. Finally, the average sferic waveforms for various TLE groups in the same 1 Mm bin are computed. The rise and decay time as well as the spectra of the average sferics are analyzed. Except for pure sprites, other group of TLEs have a similar average waveform. Only the averaged sferics associate with sprite have the longer signal duration and the energy concentrates mainly below 200 Hz.
Adachi, T., H. Fukunishi, Y. Takahashi, Y. Hiraki, K. Yamamoto, R.-R. Hsu, H.-T. Su, A. B. Chen, S. B. Mende, H. U. Frey, L. C. Lee (2005), Spatiotemporal and Spectral Characteristics of Sprites and Gigantic Jets Derived from ISUAL/Array Photometer Measurements, AGU Fall Meeting Abstracts, 23, 0993.
Arnone, E., et al. (2008), The Eurosprite 2005 campaign, in Proceedings of the 33rd Annual European Meeting on Atmospheric Studies by Optical Methods, IRF Sci. Rep. 292, edited by J. Arvelius, Swedish Inst. of Space Phys., Kiruna.
Barrington-Leigh, C. P., and U. S. Inan (1999), Elves triggered by positive and negative lightning discharges, Geophys. Res. Lett., 26, 683-686, DOI: 10.1029/1999GL900059.
Barrington-Leigh, C. P. (2000), Fast photometric imaging of high altitude optical flashes above thunderstorms, PhD thesis, Dep. of Appl. Phys., Stanford Univ., Stanford, Calif.
Barrington-Leigh, C. P., U. S. Inan, and M. Stanley (2001), Identification of sprites and elves with intensified video and broadband photometry, J. Geophys. Res., 106, 1741–1750, doi:10.1029/2000JA000073.
Bell, T. F., S. C. Reising, and U. S. Inan (1998), Intense continuing currents following positive cloud-to-ground lightning associated with red sprites, Geophys. Res. Lett., 25, 1285-1288.
Bering, E. A., III, J. R. Benbrook, J. A. Garrett, A. M. Paredes, E. M. Wescott, D. R. Moudry, D. D. Sentman, and H. C. Stenbaek-Nielsen (2002), The electrodynamics of sprites, Geophys. Res. Lett., 29(5), 1064, doi:10.1029/2001GL013267.
Bering, E. A., III, L. Bhusal, J. R. Benbrook, J. A. Garrett, A. P. Jackson, E. M. Wescott, D. R. Moudry, D. D. Sentman, H. C. Stenbaek-Nielsen, and W. A. Lyons (2004a), The results from the 1999 sprites balloon campaign, Adv. Space Res., 34, 1782–1791, doi:10.1016/j.asr.2003.05.043.
Bering, E. A., III, E. Wescott, L. Bhusal, J. R. Benbrook, A. Jackson, D. Moudry, D. D. Sentman, H. Nielsen-Stenbaek, J. Garrett, and W. A. Lyons (2004b), Observations of transient luminous events (TLEs) associated with negative cloud to ground (-CG) lightning strokes, Geophys. Res. Lett., 31, L05104, doi:10.1029/2003GL018659.
Bhusal, L., E. A. Bering III, J. R. Benbrook, J. A. Garrett, A. M. Paredes, E. M. Wescott, D. R. Moudry, D. D. Sentman, H. C. Stenbaek-Nielsen, and W. A. Lyons (2004), Statistics and properties of transient luminous events found in the 1999 Sprites Balloon Campaign, Adv. Space Res., 34, 1811–1814, doi:10.1016/j.asr.2003.05.045.
Bilitza, D., and B. W. Reinisch (2008), International Reference Ionosphere 2007: Improvements and new parameters, Adv. Space Res., 42, 599-609.
Boccippio, D. J., E. R. Williams, S. J. Heckman, W. A. Lyons, I. T. Baker, and R. Boldi (1995), Sprites, ELF transients, and positive ground strokes, Science, 269, 1088–1091, doi:10.1126/science.269.5227.1088.
Boeck, W. L., O. H. Vaughan, Jr., R. Blakeslee, B. Vonnegut, and M. Brook (1992), Lightning induced brightening in the airglow layer, Geophys. Res. Lett., 19, 99-102.
Boeck, W. L., O. H. Vaughan Jr., R. J. Blakeslee, B. Vonnegut, M. Brook, and J. McKune (1995), Observations of lightning in the stratosphere, J. Geophys. Res., 100 (D1), 1465–1475, doi:10.1029/94JD02432.
Bór, J., G. Sátori, and H. D. Betz (2009), Observation of TLEs in Central Europe from Hungary Supported by LINET, in American Institute of Physics Conference Series, edited, pp. 73-83.
Brooks (1925), C. E. P., The distribution of thunderstorms over the globe, Geophys. Memo., 3(24), 147– 164.
Burke, C. P., and D. L. Jones (1992), An experimental investigation of ELF attenuation rates in the Earth-ionosphere duct, J. Atmos. Terr. Phys., 54,p. 243.
Burke, C. P., and D. L. Jones (1996), On the polarity and continuing currents in unusually large lightning flashes deduced from ELF events, J. Atmos. Terr. Phys., 58, 531-540.
Chang, S. C., C. L. Kuo, L. J. Lee, A. B. Chen, H. T. Su, R. R. Hsu, H. U. Frey, S. B. Mende, Y. Takahashi, and L. C. Lee (2010), ISUAL far‐ultraviolet events, elves, and lightning current, J. Geophys. Res., 115, A00E46, doi:10.1029/2009JA014861.
Chang, S. C., S.-M. Huang, C.-L. Kuo, J.-K. Chou, L.-J. Lee, Y.-J. Wu, A.-B. Chen, H.-T. Su, R.-R. Hsu, L.-C. Lee, and the NCKU-ISUAL Team (2011), A possible lightning-gigantic jet interaction and the elves associated with negative cloud-to-ground lightning occurring over a very active thunderstorm, EGU General Assembly 2011, Vol. 13, EGU2011-5260.
Chen, B., et al. (2008), Global distributions and occurrence rates of transient luminous events, J. Geophys. Res., 113, A08306, doi:10.1029/2008JA013101.
Chern, J. L., R. R. Hsu, H. T. Su, S. B. Mende, H. Fukunishi, Y. Takahashi, and L. C. Lee (2003), Global survey of upper atmospheric transient luminous events on the ROCSAT-2 satellite, J. Atmos. Terr. Phys., 65, 647–659, doi:10.1016/S1364-6826(02)00317-6.
Cho, M., and M. J. Rycroft (1998), Computer simulation of the electric field structure and optical emission from cloud‐top to the ionosphere, J. Atmos. Sol. Terr. Phys., 60, 871–888, doi:10.1016/S1364-6826(98)00017-0.
Chou, J. K., et al. (2010), Gigantic jets with negative and positive polarity streamers, J. Geophys. Res. (Space Physics), 115. A00E45, doi:10.1029/2009JA014831.
Chou, J. K., L. Y. Tsai, C. L. Kuo, Y. J. Lee, C. M. Chen, A. B. Chen, H. T. Su, R. R. Hsu, P. L. Chang, and L. C. Lee (2011), Optical emissions and behaviors of the blue starters, blue jets, and gigantic jets observed in the Taiwan transient luminous event ground campaign, J. Geophys. Res., 116, A07301, doi:10.1029/2010JA016162.
Christian, H. J., et al. (2003), Global frequency and distribution of lightning as observed from space by the Optical Transient Detector, J. Geophys. Res., 108(D1), 4005, doi:10.1029/2002JD002347.
Chronis, T., R. Said, W. Koshak, E. R. Williams, M. Grant, E. McCaul, and K. Cummins (2013), New evidence on the diurnal variation of peak current in global CG lightning, Bull. Amer. Meteor. Soc..
Cummer, S. A., and U. S. Inan (1997), Measurement of charge transfer in sprite-producing lightning using ELF radio atmospherics, Geophys. Res. Lett., 24, 1731-1734.
Cummer, S. A., Inan, U. S., Bell, T. F., and Barrington-Leigh, C. P. (1998). ELF radiation produced by electrical currents in sprites. Geophys. Res. Lett., 25(8):1281–4.
Cummer, S. A. and Stanley, M. (1999). Submillisecond resolution lightning currents and sprite development: Observations and implications. Geophys. Res. Lett., 26(20):3205–3208.
Cummer, S. A., and U. S. Inan (2000a), Modeling ELF radio atmospheric propagation and extracting lightning currents from ELF observations, Radio Sci., 35, 385-394.
Cummer, S. A., and U. S. Inan (2000b), Ionospheric E region remote sensing with ELF radio atmospherics, Radio Sci., 35, 1437-1444.
Cummer, S. A. and Füllekrug, M. (2001). Unusually intense continuing current in lightning causes delayed mesospheric breakdown. Geophys. Res. Lett., 28:495.
Cummer, S. A. (2003). Current moment in sprite-producing lightning. J. Atmos. Sol. Terr. Phys., 65:499–508.
Cummer, S. A. (2006), Measurements of lightning parameters from remote electromagnetic fields, in Sprites, Elves, and Intense Lightning Discharges, NATO Sci. Ser., vol. 225, edited by M. Fullekrug, E. A. Mareev, and M. J. Rycroft, pp. 191–210, Springer, Dordrecht, Netherlands.
Cummer, S. A., N. Jaugey, J. Li, W. A. Lyons, T. E. Nelson, and E. A. Gerken (2006a), Submillisecond imaging of sprite development and structure, Geophys. Res. Lett., 33, 04104.
Cummer, S. A., H. U. Frey, S. B. Mende, R.-R. Hsu, H.-T. Su, A. B. Chen, H. Fukunishi, and Y. Takahashi (2006b), Simultaneous radio and satellite optical measurements of high-altitude sprite current and lightning continuing current, J. Geophys. Res.,111, A10315, doi:10.1029/2006JA011809.
Cummer, S. A., J. Li, F. Han, G. Lu, N. Jaugey, W. A. Lyons, and T. E. Nelson (2009), Quantification of the troposphere-to-ionosphere charge transfer in a gigantic jet, Nature Geoscience, 2, 617-620.
Dial, R. and M. Taylor (1999), Investigation of lightning induced elves over the great plains, CEDAR 1999 Workshop.
Dowden, R. L., J. B. Brundell, and C. J. Rodger (2002), VLF lightning location by time of group arrival (TOGA) at multiple sites, J. Atmos. Sol. Terr. Phys., 64, 817–830.
Eack, K. B. (2004), Electrical characteristics of narrow bipolar events, Geophys. Res. Lett., 31, L20102, doi:10.1029/2004GL021117.
Fishman, G. J., et al. (1994), Discovery of intense gamma-ray flashes of atmospheric origin, Science, 264(5163), 1313-1316.
Franz, R. C., R. J. Nemzek, and J. R. Winckler (1990), Television image of a large upward electrical discharge above a thunderstorm system, Science, 249, 48–51, doi:10.1126/science.249.4964.48.
Frey, H. U., S. B. Mende, S. A. Cummer, A. B. Chen, R. R. Hsu, H. T. Su, Y. S. Chang, T. Adachi, H. Fukunishi, and Y. Takahashi (2005), Beta-group stepped leader of elve producing lightning, Geophys. Res. Lett., 32, L13824, doi:10.1029/2005GL023080.
Frey, H.U., S.B. Mende, S.A. Cummer, J. Li, T. Adachi, H. Fukunishi, Y. Takahashi, A.B. Chen, R.R. Hsu, H.T. Su, Y.S. Chang (2007), Halos generated by negative cloud-to-ground lightning. Geophys. Res. Lett., 34, L18801.
Fukunishi, H., Y. Takahashi, M. Kubota, K. Sakanoi, U. S. Inan, and W. A. Lyons (1996), Elves: Lightning-induced transient luminous events in the lower ionosphere, Geophys. Res. Lett., 23, 2157-2160.
Fukunishi, H., Watanabe, Y., Uchida, A., Takahashi, Y. (2002), Spatial and temporal structures of sprites and elves observed by array photometers, COSPAR Colloquia Series, Volume 12, 2002, Pages 283–288.
Füllekrug, M., and A. I. Sukhorukov (1999), The contribution of anisotropic conductivity in the ionosphere to lightning flash bearing deviations in the ELF/ULF range, Geophys. Res. Lett., 26, 1109-1112.
Füllekrug, M. and Constable, S. (2000). Global triangulation of intense lightning discharges. Geophys. Res. Lett., 27(3):333–336.
Füllekrug, M., D. R. Moudry, G. Dawes, and D. D. Sentman (2001), Mesospheric sprite current triangulation, J. Geophys. Res., 106, 20,189.
Greenberg, E., C. Price, Y. Yair, M. Ganot, J. Bór, and G. Sátori (2007), ELF transients associated with sprites and elves in eastern Mediterranean winter thunderstorms, J. Atmos. Sol. Terr. Phys., 69, 1569-1586.
Hobara, Y., N. Iwasaki, T. Hayashida, N. Tsuchiya, E. R. Williams, M. Sera, Y. Ikegami, and M. Hayakawa (2000), New ELF Observation Site in Moshiri, Hokkaido Japan and the Results of Preliminary Data Analysis, Journal of Atmospheric Electricity, Vol. 20, No. 2, 99-109.
Hobara, Y., N. Iwasaki, T. Hayashida, M. Hayakawa, K. Ohta, and H. Fukunishi (2001), Interrelation between ELF transients and ionospheric disturbances in association with sprites and elves, Geophys. Res. Lett., 28, 935-938.
Hsu, R. R., H. T. Su, A. B. Chen, L. C. Lee, M. Asfur, C. Price, and Y. Yair (2003), Transient luminous events in the vicinity of Taiwan, J. Atmos. Sol. Terr. Phys., 65, 561–566, doi:10.1016/S1364-6826(02)00320-6.
Hsu, R.-R., A. B. Chen, C.-L. Kuo, H.-T. Su, H. Frey, S. Mende, Y. Takahashi, and L.-C. Lee (2009), On the global occurrence and impacts of transient luminous events (TLEs), AIP Conf. Proc., 1118(1), 99–107, doi:10.1063/1.3137720.
Hsu, C.-L. (2009), Calibration of the BF-4 Magnetic Field Induction Sensor and the Algorithm of Lightning Related Charge Moment, Master’s thesis of Physics, National Cheng Kung University, Tainan, Taiwan.
Hu, W., S. A. Cummer, W. A. Lyons, and T. E. Nelson (2002), Lightning charge moment changes for the initiation of sprites, Geophys. Res. Lett., 29, 120-121.
Huang, E. W. (1998), Electromagnetic transients, elves, and red sprites in the Earth-ionosphere waveguide, M.Eng. thesis, Mass. Inst. of Technol., Cambridge.
Huang, E., E. Williams, R. Boldi, S. Heckman, W. Lyons, M. Taylor, T. Nelson, and C. Wong (1999), Criteria for sprites and elves based on Schumann resonance observations, J. Geophys. Res., 104, 16,943–16,964, doi:10.1029/1999JD900139.
Huang, S.‐M., C.‐L. Hsu, A. B. Chen, J. Li, L.‐J. Lee, G.‐L. Yang, Y.‐C. Wang, R.‐R. Hsu, and H.‐T. Su (2011), Effects of notch‐filtering on the ELF sferics and the physical parameters, Radio Sci., 46, RS5014, doi:10.1029/2010RS004519.
Huang, S.-M., R.-R. Hsu, L.-J. Lee, H.-T. Su, C.-L. Kuo, C.-C. Wu, J.-K. Chou, S.-C. Chang, Y.-J. Wu, and A. B. Chen (2012), Optical and radio signatures of negative gigantic jets: Cases from Typhoon Lionrock (2010), J. Geophys. Res., 117, A08307, doi:10.1029/2012JA017600.
Hunsucker, R. D., Hargreaves, J. K. (2002), The high-latitude ionosphere and its effects on radio propagation. Cambridge University Press. p. 419. ISBN 0-521-33083-1.
Hutchins, M.L., R. H. Holzworth, C. J. Rodger and J. B. Brundell (2012), Far field power of lightning strokes as measured by the World Wide Lightning Location Network, JTech (J. Atmos. and Ocean. Tech. (AMS), V.29,1102-1110.
Inan, U .S., T. F. Bell, and J. V. Rodriguez (1991), Heating and ionization of the lower ionosphere by lightning, Geophys. Res. Lett., 18, 705-708.
Inan, U. S., T. F. Bell, V. P. Pasko, D. D. Sentman, E. M. Wescott, and W. A. Lyons (1995), VLF signatures of ionospheric disturbances associated with sprites, Geophys. Res. Lett., 22, 3461-3464.
Inan, U. S., W. A. Sampson, and Y. N. Taranenko (1996a), Spacetime structure of optical flashes and ionization changes produced by lightning-EMP, Geophys. Res. Lett., 23, 133.
Inan, U. S., S. C. Reising, G. J. Fishman, and J. M. Horack (1996b), On the association of terrestrial gamma-ray bursts with lightning and implication for sprites, Geophys. Res. Lett., 23(9), 1017-1020, doi: rm10.1029/96GL00746.
Inan U. S., C. Barrington-Leigh, S. Hansen, V. S. Glukhov, T. F. Bell, R. Rairden (1997), Rapid lateral expansion of optical luminosity in lightning-induced ionospheric flashes referred to as ‘elves', Geophys. Res. Lett., 24(5), 583-586, DOI: 10.1029/97GL00404.
Inan, U. S., S. A. Cummer, and R. A. Marshall (2010), A survey of ELF and VLF research on lightning-ionosphere interactions and causative discharges, J. Geophys. Res. (Space Physics), 115.
Ishaq, M., and D. L. Jones (1977), Method of obtaining radiowave propagation parameters for the earth-ionosphere duct at E.L.F, Electronics Letters, 13, 254.
Israelevich, P. L., Y. Yair, A. D. Devir, J. H. Joseph, Z. Levin, I. Mayo, M. Moalem, C. Price, B. Ziv, and A. Sternlieb (2004), Transient airglow enhancements observed from the space shuttle Columbia during the MEIDEX sprite campaign, Geophys. Res. Lett., 31, 06124, DOI: 10.1029/2003GL019110.
Jacobson, A. R., and M. J. Heavner, (2005), Comparison of Narrow Bipolar Events with Ordinary Lightning as Proxies for Severe Convection, Mon. Wea. Rev., 133, 1144–1154.
Jones, D. L. (1967), Schumann Resonances and e.l.f. propagation for inhomogeneous, isotropic ionosphere profiles, J. Atmos. Sol. Terr. Phys., 29, 1037-1044.
Krehbiel, P. R., J. A. Riousset, V. P. Pasko, R. J. Thomas, W. Rison, M. A. Stanley, and H. E. Edens (2008), Upward electrical discharges from thunderstorms, Nat. Geosci., 1, 233–237.
Kuo, C.-L., R. R. Hsu, A. B. Chen, H. T. Su, L. C. Lee, S. B. Mende, H. U. Frey, H. Fukunishi, and Y. Takahashi (2005), Electric fields and electron energies inferred from the ISUAL recorded sprites, Geophys. Res. Lett., 32, 19103.
Kuo, C.‐L., et al. (2007), Modeling elves observed by FORMOSAT‐2 satellite, J. Geophys. Res., 112, A11312, doi:10.1029/2007JA012407.
Kuo, C. L., A. B. Chen, J. K. Chou, L. Y Tsai, R. R. Hsu, H. T. Su, H. U. Frey, S. B. Mende, Y. Takahashi, and L. C. Lee (2008), Radiative emission and energy deposition in transient luminous events, Journal of Physics D Applied Physics, 41, 4014.
Kuo, C.-L., et al. (2009), Discharge processes, electric field, and electron energy in ISUAL-recorded gigantic jets, J. Geophys. Res. (Space Physics), 114, 04314.
Kuo, C. L., et al. (2011), The 762 nm emissions of sprites, J. Geophys. Res., 116, A01310, doi:10.1029/2010JA015949.
Kuo, C. L., et al. (2012), Full-kinetic elve model simulations and their comparisons with the ISUAL observed events, J. Geophys. Res., 117, A07320, doi:10.1029/2012JA017599.
Lang, T. J. et al., The severe thunderstorm electrification and precipitation study (2004), Bull. Am. Meteorol. Soc., 85, 1107–1125.
Lee, L.-J., et al. (2010), Controlling synoptic-scale factors for the distribution of transient luminous events, J. Geophys. Res., 115, A00E54.
Lee, L.-J., S.-M. Huang, J.-K. Chou, C.-L. Kuo, A. B. Chen, H.-T. Su, R.-R. Hsu, H. U. Frey, Y. Takahashi, and L.-C. Lee (2012), Characteristics and generation of secondary jets and secondary gigantic jets, J. Geophys. Res., 117, A06317, doi:10.1029/2011JA017443.
Li, J., S. A. Cummer, W. A. Lyons, and T. E. Nelson (2008), Coordinated analysis of delayed sprites with high-speed images and remote electromagnetic fields, J. Geophys. Res. (Atmospheres), 113, 20206.
Li, J., S. A. Cummer, G. Lu, and L. Zigoneanu (2012), Charge moment change and lightning-driven electric fields associated with negative sprites and halos, J. Geophys. Res., 117, A09310, doi:10.1029/2012JA017731.
Lu, G., S. A. Cummer, J. Li, F. Han, R. J. Blakeslee, and H. J. Christian (2009), Charge transfer and in-cloud structure of large-charge-moment positive lightning strokes in a mesoscale convective system, Geophys. Res. Lett., 36, L15805, doi:10.1029/2009GL038880.
Lu, G., et al. (2011), Lightning development associated with two negative gigantic jets, Geophys. Res. Lett., 38, 12801.
Lu, G., et al. (2013), Coordinated observations of sprites and in‐cloud lightning flash structure, J. Geophys. Res. (Atmospheres), doi:10.1002/jgrd.50459.
Lyons, W. A., R. A. Armstrong, E. A. Bering III, and E. R. Williams (2000), The hundred year hunt for the sprite, Eos Trans. AGU, 81(33), 373–377, doi:10.1029/00EO00278.
Lyons, W. A., T. E. Nelson, R. A. Armstrong, V. P. Pasko, M. A. Stanley (2003), Upward electrical discharges from thunderstorm tops. Bull. Am. Meteorol. Soc., 84(4), 445–454, doi:10.1175/BAMS-84-4-445.
Lyons, W. A. (2006), The meteorology of transient luminous events—an introduction and overview, Sprites, Elves and Intense Lightning Discharges, pp 19–56.
Lyons, W. A., T. A. Warner, S. A. Cummer, T. A. Lang, and R. E. Orville (2010), Ongoing explorations of exceptional lightning discharges in several meteorological regimes, Abstract AE14A-08 presented at 2010 Fall Meeting, AGU, San Francisco, Calif., 13–17 Dec.
MacKenzie, T. and Toynbee, H. (1886). Meteorological phenomena. Nature, 33:26.
Marshall, R. A., U. S. Inan, and W. A. Lyons (2006), On the association of early/fast very low frequency perturbations with sprites and rare examples of VLF backscatter, J. Geophys. Res. (Atmospheres), 111, 19108.
Maxime Aubert, A review of rock art dating in the Kimberley, Western Australia (2012), Journal of Archaeological Science, Volume 39, Issue 3, March 2012, Pages 573–577
Mende, S. B., H. U. Frey, R. R. Hsu, H. T. Su, A. B. Chen, L. C. Lee, D. D. Sentman, Y. Takahashi, and H. Fukunishi (2005), D region ionization by lightning-induced electromagnetic pulses, J. Geophys. Res. (Space Physics), 110, 11312.
Meyer, T. C., T. J. Lang, S. A. Rutledge, W. A. Lyons, S. A. Cummer, G. Lu, and D. T. Lindsey (2013), Radar and lightning analyses of gigantic jet-producing storms, J. Geophys. Res. Atmos., 118, 2872–2888, doi:10.1002/jgrd.50302.
Mika, Á., C. Haldoupis, T. Neubert, H. T. Su, R. R. Hsu, R. J. Steiner, and R. A. Marshall (2006), Early VLF perturbations observed in association with elves, Ann. Geophys., 24, 2179–2189.
Miyasato, R., M. J. Taylor, H. Fukunishi, and H. C. Stenbaek-Nielsen (2002), Statistical Characteristics of Sprite Halo Events Using Coincident Photometric and Imaging Data, Geophys. Res. Lett., 29, 29-21.
Montanyà, J., O. van der Velde, D. Romero, V. March, G. Solà, N. Pineda, M. Arrayas, J. L. Trueba, V. Reglero, and S. Soula (2010), High‐speed intensified video recordings of sprites and elves over the western Mediterranean Sea during winter thunderstorms, J. Geophys. Res., 115, A00E18, doi:10.1029/2009JA014508.
Morrow, R., and T. R. Blackburn (2002), The stepped nature of lightning, and the upward connecting streamer, J. Phys. D: Appl. Phys., 35, L69-L73.
Moudry, D., H. Stenbaek-Nielsen, D. Sentman, and E. Wescott (2003), Imaging of elves, halos and sprite initiation at 1ms time resolution, J. Atmos. Sol. Terr. Phys., 65, 509-518.
Nag, A., V. A. Rakov, D. Tsalikis, and J. A. Cramer (2010), On phenomenology of compact intracloud lightning discharges, J. Geophys. Res., 115, D14115, doi:10.1029/2009JD012957.
Neubert, T., et al. (2005), Co-ordinated observations of transient luminous events during the EuroSprite2003 campaign, J. Atmos. Sol. Terr. Phys., 67, 807-820.
Newsome, R. T., and U. S. Inan (2010), Free‐running ground‐based photometric array imaging of transient luminous events, J. Geophys. Res., 115, A00E41, doi:10.1029/2009JA014834.
O'Shea, P., A. Z. Sadik, and Z. M. Hussain (2010), Digital Signal Processing: An Introduction with MATLAB and Applications, Springer Verlag.
Oliver, John E. (2005). Encyclopedia of World Climatology. National Oceanic and Atmospheric Administration. ISBN 978-1-4020-3264-6. Retrieved February 8, 2009.
Pasko, V. P., U. S. Inan, T. F. Bell, and Y. N. Taranenko (1997), Sprites produced by quasi-electrostatic heating and ionization in the lower ionosphere, J. Geophys. Res., 102, 4529-4562.
Pasko, V. P., U. S. Inan, and T. F. Bell (1998), Spatial structure of sprites, Geophys. Res. Lett., 25, 2123–2126.
Pasko, V. P., and H. C. Stenbaek‐Nielsen (2002), Diffuse and streamer regions of sprites, Geophys. Res. Lett., 29(10), 1440, doi:10.1029/2001GL014241.
Pasko, V. P., M. A. Stanley, J. D. Mathews, U. S. Inan, and T. G. Wood (2002), Electrical discharge from a thundercloud top to the lower ionosphere, Nature, 416, 152–154, doi:10.1038/416152a.
Pasko, V. P. (2008), Blue jets and gigantic jets: transient luminous events between thunderstorm tops and the lower ionosphere, Plasma Physics and Controlled Fusion, 50(12), 124050.
Pasko, V. P. (2010), Recent advances in theory of transient luminous events, J. Geophys. Res., 115, A00E35, doi:10.1029/2009JA014860.
Pasko, V. P., Y. Yair, and C.-L. Kuo (2011), Lightning Related Transient Luminous Events at High Altitude in the Earth's Atmosphere: Phenomenology, Mechanisms and Effects, Space Science Reviews, 287.
Pinto Jr., O., M.M.F. Saba, I.R.C.A. Pinto, F.S.S. Tavares, K.P. Naccarato, N.N. Solorzano, M.J. Taylor, P.D. Pautet, and R.H. Holzworth (2004), Thunderstorm and lightning characteristics associated with sprites in Brazil, Geophys. Res. Lett., 31, L13103, doi: 10.1029/2004GL020264.
Reising, S. C., U. S. Inan, and T. F. Bell (1999), ELF sferic energy as proxy indicator for sprite occurrence, Geophys. Res. Lett., 26, 987–990.
Riousset, J. A., V. P. Pasko, P. R. Krehbiel, W. Rison, and M. A. Stanley (2010), Modeling of thundercloud screening charges: Implications for blue and gigantic jets, J. Geophys. Res. (Space Physics), 115.
Rison,W., Thomas, R. J., Krehbiel, P. R., Hamlin, T. and Harlin, J. (1999), A GPS-based three-dimensional lightning mapping system: Initial observations in central New Mexico. Geophys. Res. Lett., 26, 3573–3576.
Ploum, Albrecht (2012), Iconography, science and lightning figures. Australian Aboriginal Studies, No. 2, 2012: 87-95.
Rakov, Vladimir A. and Uman, Martin (2007), Lightning: Physics and Effects, Cambridge University Press.
Rodger, C. J., S. Werner, J. B. Brundell, E. H. Lay, N. R. Thomson E. H. Lay, R. H. Holzworth, and R. L. Dowden (2006), Detection efficiency of the VLF Worldwide Lightning Location Network (WWLLN): Initial case study, Ann. Geophys., 24, 3197–3214.
Sao Sabbas, F.T., D.D. Sentman, E.M. Wescott, O. Pinto, Jr., O. Mendes, Jr., and M.J. Taylor (2003), Statistical analysis of space-time relationships between sprites and lightning. J. Atmos. Sol. Terr. Phys., 65, 525-535, doi:10.1016/S1364-6826(02)00326-7.
São Sabbas, F. T., Rampinelli, V. T., Santiago, J., Stamus, P., Vadas, S. L., Fritts, D. C., Taylor, M. J., Pautet, P. D., Dolif Neto, G., and Pinto, O. (2009), Characteristics of sprite and gravity wave convective sources present in satellite IR images during the SpreadFEx 2005 in Brazil, Ann. Geophys., 27, 1279-1293, doi:10.5194/angeo-27-1279-2009.
Sato, M., and H. Fukunishi (2003), Global sprite occurrence locations and rates derived from triangulation of transient Schumann resonance events, Geophys. Res. Lett., 30.
Sentman, D. D., E. M.Wescott, D. L. Osborne, D. L. Hampton, and M. J. Heavner (1995), Preliminary results from the Sprites94 aircraft campaign: 1. Red Sprites, Geophys. Res. Lett., 22, 1205-1208.
Sentman, D. D. (1996), Schumann resonance spectra in a two-scale-height Earth-ionosphere cavity, J. Geophys. Res., 101, 9479-9488.
Smith, D., X. M. Shao, D. N. Holden, C. T. Rhodes, M. Brook, P. R. Krehbiel, M. Stanley, W. Rison, and R. Thomas (1999), A distinct class of isolated intracloud lightning discharges and their associated radio emissions, J. Geophys. Res., 104(D4), 4189–4212, doi:10.1029/1998JD200045.
Smith, D. A., M. J. Heavner, A. R. Jacobson, X. M. Shao, R. S. Massey, R. J. Sheldon, and K. C. Wiens (2004), A method for determining intracloud lightning and ionospheric heights from VLF/LF electric field records, Radio Sci., 39, RS1010, doi:10.1029/2002RS002790.
Soula, S., O. van der Velde, J. Montanya, P. Huet, C. Barthe, and J. Bór (2011), Gigantic jets produced by an isolated tropical thunderstorm near Réunion Island, J. Geophys. Res. (Atmospheres), 116, 19103.
Su, H.-T., R.-R. Hsu, A. B.-C. Chen, Y.-J. Lee, and L.-C. Lee (2002), Observation of sprites over the Asian continent and over oceans around Taiwan, Geophys. Res. Lett., 29(4), 1044, doi:10.1029/2001GL013737.
Su, H. T., R. R. Hsu, A. B. Chen, Y. C. Wang, W. S. Hsiao, W. C. Lai, L. C. Lee, M. Sato, and H. Fukunishi (2003), Gigantic jets between a thundercloud and the ionosphere, Nature, 423, 974–976, doi:10.1038/nature01759.
Takahashi, Y., M. Kubota, K. Sakanoi, H. Fukunishi, U. S. Inan, and W. A. Lyons (1995), Spatial and temporal relationship between lower ionospheric flashes and sprites, EOS Supplement, 76(106).
Takahashi, Y., et al. (2010), Absolute optical energy of sprites and its relationship to charge moment of parent lightning discharge based on measurement by ISUAL/AP, J. Geophys. Res. (Space Physics), 115.
Taylor, M. J., et al. (2008), Rare measurements of a sprite-halo driven by a negative lightning discharge over Argentina, Geophys. Res. Lett., 35, L14812, doi:10.1029/2008GL033984.
Thomas, J. N., R. H. Holzworth, M. P. McCarthy, and O. Pinto (2005), Lightning sferics and stroke-delayed pulses measured in the stratosphere: Implications for mesospheric currents, Geophys. Res. Lett., 32, L22807, doi:10.1029/2005GL024629.
Tsai, L.Y., S. M. Huang, A. B. Chen, S. C. Chang, J. K. Chou, C. M. Chen, H. T. Su, R. R. Hsu, C. L. Kuo, C. C. Wu, P. S. Lin, R. Holzworth, H. Frey, S. B. Mende, Y. Takahashi, and L. C. Lee (2009), Blue jets over tropical cyclones, AGU Chapman Conference on the Effects of Thunderstorms and Lightning in the Upper Atmosphere, abstract# OTL-12.
van der Velde, O. A., W. A. Lyons, T. E. Nelson, S. A. Cummer, J. Li, and J. Bunnell (2007), Analysis of the first gigantic jet recorded over continental North America, J. Geophys. Res. (Atmospheres), 112, 20104.
van der Velde, O. A., J. Bór, J. Li, S. A. Cummer, E. Arnone, F. Zanotti, M. Füllekrug, C. Haldoupis, S. NaitAmor, and T. Farges (2010), Multi-instrumental observations of a positive gigantic jet produced by a winter thunderstorm in Europe, J. Geophys. Res. (Atmospheres), 115, 24301.
Wait, J. R., I. Antennas, and P. Society (1996), Electromagnetic waves in stratified media, Institute of Electrical and Electronics Engineers.
Wang, Y.‐C., K. Wang, H.‐T. Su, and R.‐R. Hsu (2005), Low‐latitude ELF‐whistlers observed in Taiwan, Geophys. Res. Lett., 32, L08102, doi:10.1029/2005GL022412.
Weidman, C. D., and E. P. Krider (1986), The amplitude spectra of lightning radiation fields in the interval from 1 to 20 MHz, Radio Sci., 21,p. 964.
Wescott, E. M., D. Sentman, D. Osborne, D. Hampton, and M. Heavner (1995), Preliminary results from the Sprites94 Aircraft Campaign: 2. Blue jets, Geophys. Res. Lett., 22(10), 1209–1212, doi:10.1029/95GL00582.
Wescott, E. M., D. D. Sentman, M. J. Heavner, D. L. Hampton, D. L. Osborne, and O. H. Vaughan (1996), Blue starters: Brief upward discharges from an intense Arkansas thunderstorm, Geophys. Res. Lett., 23, 2153–2156, doi:10.1029/96GL01969.
Wescott, E. M., Sentman D. D., Heavner M. J., Hampton D. L., Lyons W. A., Nelson T. (1998), Observations of 'Columniform' sprites, J. Atmos. Sol. Terr. Phys., 60, 733-740.
Wescott, E. M., H. C. Stenbaek-Nielsen, D. D. Sentman, M. J. Heavner, D. R. Moudry, and F. T. São Sabbas (2001), Triangulation of sprites, associated halos and their possible relation to causative lightning and micrometeors, J. Geophys. Res., 106, 10,467– 10,477.
Williams, E. R. (1989), The tripole structure of thunderstorms, J. Geophys. Res., 94, 13,151–13,167.
Williams, E., and S. Stanfill (2002), The physical origin of the land-ocean contrast in lightning activity, C. R. Phys., 3, 1277–1292.
Williams, E. R. (2006), Problems in lightning physics—the role of polarity asymmetry, Plasma Sources Science Technology, 15, 91.
Williams, E., E. Downes, R. Boldi, W. Lyons, and S. Heckman (2007), Polarity asymmetry of sprite-producing lightning: A paradox?, Radio Sci., 42, RS2S17, doi:10.1029/2006RS003488.
Williams, E. R., et al. (2010), Ground-based detection of sprites and their parent lightning flashes over Africa during the 2006 AMMA campaign, Quarterly Journal of the Royal Meteorological Society, 136, 257-271.
Williams, E. R., et al. (2012), Resolution of the sprite polarity paradox: The role of halos, Radio Sci., 47, RS2002, doi:10.1029/2011RS004794.
Wilson, C. T. R. (1924), The electric field of a thundercloud and some of its effects, Proc. Phys. Soc., London 37, 32D-37D, doi:10.1088/1478-7814/37/1/314
Wilson, C. T. R. (1956). A theory of thundercloud electricity. Proc. Roy. Soc., Lond., Series A, 236:297–317.
Wu, C.-C., T.-S. Huang, W.-P. Huang, and K.-H. Chou (2003), A new look at the binary interaction: Potential vorticity diagnosis of the unusual southward movement of Typhoon Bopha (2000) and its interaction with Typhoon Saomai (2000). Mon. Wea. Rev.,131, 1289-1300.
Wu, Y. J., et al. (2012), Occurrence of elves and lightning during El Niño and La Niña, Geophys. Res. Lett., 39, L03106, doi:10.1029/2011GL049831
Wu, T., W. Dong, Y. Zhang, T. Funaki, S. Yoshida, T. Morimoto, T. Ushio, and Z. Kawasaki (2012), Discharge height of lightning narrow bipolar events, J. Geophys. Res., 117, D05119, doi:10.1029/2011JD017054.
Yair, Y., C. Price, M. Ganot, E. Greenberg, R. Yaniv, B. Ziv, Y. Sherez, A. Devir, J. z. Bór, and G. Sátori (2009), Optical observations of transient luminous events associated with winter thunderstorms near the coast of Israel, Atmospheric Research, 91, 529-537.
Yamashita, K., Y. Takahashi, M. Sato, and H. Kase (2011), Improvement in lightning geolocation by time‐of‐arrival method using global ELF network data, J. Geophys. Res., 116, A00E61, doi:10.1029/2009JA014792.