簡易檢索 / 詳目顯示

研究生: 張育仁
Chang, Yu-Ren
論文名稱: 二氧化碳雪花噴流之形成與特性研究
Formation and Characterization of the CO2 Snow Jet
指導教授: 王覺寬
Wang, Muh-Rong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 110
中文關鍵詞: 二氧化碳雪花噴流霧化乾冰
外文關鍵詞: dry ice, atomization, co2 snow
相關次數: 點閱:97下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以實驗方法探討二氧化碳雪花噴霧結構及其暫態演變過程,並且探討不同二氧化碳雪花形成腔體對二氧化碳雪花特性之影響。實驗結果顯示,二氧化碳雪花噴流在形成的過程,會經歷霧化、蒸發、凝結等暫態演變過程,所形成之二氧化碳雪花噴流具有雙層結構,其內層結構是由低溫二氧化碳氣相與固相所組成之雪花流體,而外層結構則為環境中的水氣凝結之水霧結構。因為高壓二氧化碳流體首先在雪花形成腔體內產生降壓及相變化,形成氣、固兩相混合之二氧化碳雪花流體。當此氣、固相混合流體由雪花形成腔體噴出後,復由於雪花粒子在噴流中之昇華現象以及雪花粒子間之碰撞結合,會改變噴流中二氧化碳雪花之粒徑大小、粒子濃度及其空間分佈。實驗結果發現,當二氧化碳雪花形成腔體長度增加,二氧化碳雪花粒子濃度有上升的趨勢,這是因為在較長的雪花形成腔體中,二氧化碳流體有較長的時間完成相變化及雪花成核過程。實驗結果亦顯示雪花形成腔體長度並不影響大顆粒雪花之產生,但會影響小顆粒雪花之數量。當雪花形成腔體長度增加,二氧化碳雪花之小顆粒數量隨之遞增,可以運用於電子微製程之清洗應用上。另外,雪花形成腔體直徑大小對雪花特性亦有相當大之影響,當雪花形成腔體直徑增加,二氧化碳雪花粒子濃度隨之遞增,且其噴射過程穩定,這是因為當雪花形成腔體管徑變大,流體速度降低,因此二氧化碳在腔體內的滯留時間變長,使得高壓液態二氧化碳流體有較長的時間完成相變化及雪花成核過程。但若雪花形成腔體直徑太小,則在雪花形成腔體內易產生氣阻現象,導致雪花呈現間歇性噴流。二氧化碳供應壓力亦會影響二氧化碳雪花粒徑之分佈。若噴射壓力較高時,所形成之二氧化碳雪花粒徑分佈較均勻,且操作穩定性較佳,故壓力亦為控制二氧化碳雪花粒徑分佈之重要參數。

    This paper investigates the formation processes and the effects of the design parameters on the characteristics of the CO2-snow jet. Liquid-CO2 was first supplied to a CO2-snow formation chamber through an orifice. The pressure and phase changes in the CO2-snow formation chamber resulted in the production of a mixture of gaseous CO2 and solid particles of dry ice. The solid particles were called CO2-snow. The mixture was then injected from the CO2-snow formation chamber to form a CO2-snow jet. Result showed that the CO2-snow jet had the double layer structure. The inner layer was formed by the cryogenic CO2 snow. The outer layer was formed by the water drops which were condensed due to the heat transfer to the cryogenic CO2 layer. The sublimation and the collisions between the CO2 particles in the jet flow resulted in the change of the particle size, concentration and distribution of the CO2-snow. Result showed the concentration of the CO2-snow particles was increased as the length and diameter of CO2-snow formation chamber were increased because of the increase in residence time of the CO2-flow in the formation chamber. It indicated that the CO2-flow needs enough time to complete the phase change and the nucleation processes of the CO2-snow particles. It was also found that the change of the length of the CO2-snow formation chamber affected the production of the small particles. But the large particles were less affected. As a result, the amount of the smaller particles was increased as the length of the CO2-snow formation chamber became longer which is useful in the cleaning processes of the electrical production processes. Result also showed that the change of the diameter of the CO2-snow formation chamber affected the stability of the CO2-snow jet. It turns out that the operation of the CO2-snow jet was more stable as the diameter of the snow formation was increased. The phenomenon of chocking in the CO2-snow formation chamber could be avoided as the diameter of the chamber was increased. It was also found that the pressure of the liquid-CO2 would affect the particle distribution of the CO2-snow. The particle size became more uniform and operation was more stable under high pressure injection. Hence the adjustment of injection pressure of the CO2 liquid is important to control the particle size of the CO2-snow jet.

    中文摘要 英文摘要 誌謝 目錄 ................................................................................................ Ⅰ 表目錄 ............................................................................................. Ⅲ 圖目錄 ............................................................................................. Ⅳ 符號說明 ......................................................................................... Ⅶ 第一章 緒論 ..................................................................................... 1 前言 ..................................................................................... 1 1-1 二氧化碳清洗技術簡介 ......................................................... 1 1-2 二氧化碳熱力性質 ................................................................ 3 1-3 二氧化碳雪花形成原理 .......................................................... 4 1-4 文獻回顧 ............................................................................... 5 1-4-1 二氧化碳雪花清洗相關研究 ........................................... 5 1-4-2 粒子影像測速技術 ....................................................... .6 1-4-3 霧化原理與噴嘴設計 ..................................................... 8 1-5 研究動機 ............................................................................. 17 第二章 實驗設備及儀器 .................................................................. 32 2-1 實驗設備 ............................................................................ 32 2-1-1 噴嘴性能測試台架 ....................................................... 32 2-1-2 抽氣整流系統 .............................................................. 32 2-1-3 高壓液態二氧化碳供應系統 ......................................... 33 2-1-4 二氧化碳雪花形成裝置 ................................................ 33 2-2 量測儀器 ............................................................................ 34 2-2-1 RT-Sizer 粒徑分析儀 ................................................... 34 2-2-2 RT-Sizer 粒徑分析儀校正記錄..................................... 36 2-2-3 PIV 粒子影像測速儀 .................................................... 37 2-3 主要量測參數 ...................................................................... 37 第三章 實驗步驟及方法 .................................................................. 47 3-1 實驗量測條件 ..................................................................... 47 3-2 二氧化碳雪花流場速度的量測 ............................................. 47 3-3 二氧化碳雪花流場之視流觀察 ............................................. 48 3-4 RT-Sizer 粒徑分析儀的量測 .............................................. 48 3-5 數據取樣與分析 .................................................................. 50 第四章 結果與討論 ......................................................................... 51 4-1 二氧化碳雪花噴射之視流實驗 ............................................. 51 4-1-1 二氧化碳雪花雙層噴霧結構之暫態演變過程 ................ 52 4-1-2 二氧化碳雪花噴流之出口視流觀測 .............................. 53 4-2 二氧化碳雪花噴霧之特性研究 ............................................. 54 4-2-1 二氧化碳雪花噴霧特性沿軸向之變化 .......................... 55 4-2-1-1 二氧化碳雪花噴霧濃度沿軸向之變化.................... 55 4-2-1-2 二氧化碳雪花噴霧粒徑沿軸向之粒徑分佈 ............ 57 4-2-1-3 二氧化碳雪花體積累積百分比在軸向之變化 ......... 57 4-2-1-4 二氧化碳雪花噴霧平均粒徑在軸向之變化 ............. 59 4-2-2 雪花形成腔體對二氧化碳雪花噴霧特性之影響 ............ 60 4-2-2-1 雪花形成腔體長度對二氧化碳雪花濃度之影響 ..... 60 4-2-2-2 雪花形成腔體長度對二氧化碳雪花體積百分比 之影響 ................................................................. 62 4-2-2-3 雪花形成腔體長度對二氧化碳雪花平均粒徑 之影響 ................................................................. 63 4-2-2-4 二氧化碳雪花流場速度之量測 .............................. 65 4-2-2-5 雪花形成腔體管徑對二氧化碳雪花濃度之影響 ...... 66 4-2-2-6 雪花形成腔體管徑對二氧化碳粒徑之影響 ............ 68 4-2-2-7 噴嘴孔口直徑對二氧化碳雪花粒徑之影響 ............ 69 4-2-3 液態二氧化碳供應系統對雪花噴霧特性之影響 ............ 70 第五章 結論 .................................................................................…98 參考文獻 ......................................................................................... 101 自述 .............................................................................................. 108

    [1] S.A. Hoening, “Cleaning surface with dry ice”, “Compressed
    Air” Mag., ED-8, pp22-24, 1986.
    [2] S.A. Hoening, “Dry ice snow as a cleaning media for hybrids
    and integrated circuits”, Hybrids Circuit Technol. ED-7,
    pp.34-37, 1990.
    [3] M.M. Hills, “Carbon dioxide jet spray cleaning of molecular
    contaminants”, J. Vac. Sci. Technol. A, Vol. 13, No 1, pp.
    30-34, 1995.
    [4] S. Banerjee and A. Campbell, “Principles and mechanisms of
    sub-micrometer particle removal by CO2 cryogenic technique”,
    J. Adhes. Sci. Technol., pp739-751, 2005.
    [5] Robert Sherman,” Carbon Dioxide Snow Cleaning”,
    Particulate Sci. Technol., Vol.25, pp.37-57, 2007.
    [6] S.C. Yang, K.S. Huang, Y.C. Lin, “Optimization of a pulsed
    carbon dioxide snow jet for cleaning CMOS image sensors by
    using the Taguchi method”, Sensors and Actuators A, Vol. 139,
    pp. 265-271, 2007.
    [7] Lourenco, L. M., Krothapalli, A., and Smith, C. A.,
    1989, “Particle Image Velocimetry”, Advances in Fluid
    Mechanics Measurements, Lecture Notes in Engineering-45,
    Springer-Verlag, pp. 127-200.
    102
    [8] Lourenco, L. M., Krothapalli, A., Buchlin, J. M., and
    Riethmuller, M. L., 1986, “A Non-Invasive Experimental
    Technique for the Measurement of Unsteady Velocity and
    Vorticity Fields”, AIAA Jornal, 24, pp. 1715-1717.
    [9] Lourenco, L. M., and Krothapalli A., 2004, “Stereoscopic and
    Time Resolved PIV Measurements in High-Speed Flows”,
    AIAA, 2180-2194.
    [10] Raffel, M., Willert, C. E., Kompenhans, J., 1998, Particle
    Image Velocimetry–A Practical Guide, Springer, ISBN
    3-540-63683-8.
    [11] Willert, C., Raffel, M., Kompenhans, J., Stasicki, B., and
    La’’hler, C., 1996, “Recent Applications of Particle Image
    Velocimetry in Aerodynamic Research”, Flow Meas. Instrum.,
    7(3/4). pp. 247-256.
    [12] Newbery, A. P., Rayment, T., and Grant, P. S., 2004, “A
    Particle Image Velocimetry Investigation of In-Flight and
    Deposition Behavior of Steel Droplets During Electric Arc
    Sprayforming”, Materials Science and Engineering A, 383, pp.
    137-145.
    [13] Adrian, R. J., 2005, “Twenty Years of Particle Image
    Velocimetry”, Experiments in Fluids, 39, pp. 159-169.
    [14] Menon, M., and Lai, W. T., 1991, “Key Considerations in the
    Selection of Seed Particles for LDV measurements”, Laser
    Anemometry Advances and Applications, ASME, pp. 719-730.
    103
    [15] Ikeda, Y., Nishigaki, M., Ippommatsu, M., and Nakajima, T.,
    1994, “Optimum Seeding Particles for Successful Laser
    Doppler Velocimeter Measurements”, Part. Part. Syst. Charact.,
    11, pp. 127-132.
    [16] Nishigaki, M., Ippommatsu, M., Ikeda, Y., and Nakajima, T.,
    1992, “New High-Performance Tracer Particles for Optical
    Gas Flow Diagnostics”, Meas. Sci. Technol., 3, pp. 619-621.
    [17] Lee, K. H., Lee, C. H., and Lee, C. S., 2004, “An Experimental
    Study on the Spray Behavior and Fuel Distribution of GDI
    Injectors Using the Entropy Analysis and PIV Method”, Fuel,
    83, pp. 971-980.
    [18] Richter, B., Rottenkolber, G., Hehle, M., Dullenkopf, K., and
    Wittig, S., 2001, “Investigation of Fuel Sprays by Means of
    Stereoscopic Particle Image Velocimetry and Highspeed
    Visualization”, ILASS-Europe 2001, Zurich, 2-6 September.
    [19] A. H. Lefebvre, “Atomization and Sprays,” Hemisphere
    Publishing Corporation, New York, 1989.
    [20] A. H. Lefebvre, “Gas Turbine Combustion,” Chapter 10,
    Hemisphere Publishing Corporation, New York, 1983.
    [21] R. A., Jr. Castleman, “The Mechanism of the Atomization of
    Liquids,” Burean of Standards Journal of Research, Vol. 6, pp.
    369-376, 1930.
    [22] N. Dombrowski and W. R. Johns, “The Aerodynamic
    104
    Instability and Disintergration of Viscous Liquid Sheets,”
    Chem. Eng. Sci., Vol. 18, pp. 203-214, 1963.
    [23] B. E. Stapper, W. A. Sowa and G. S. Samuelsen, ”An
    Experimental Study of the Effects of Liquid Properties on the
    Breakup of a Two-dimensional Liquid Sheet,” ASME, Journal
    of Engineering for Gas Turbines and Power, Vol. 114, pp.
    39-45, 1992.
    [24] R. P. Fraser, ”Liquid Fuel Atomization,” Sixth
    Symposium(International) on Combustion, Rein-hold, New
    York, pp. 687-701, 1957.
    [25] G. D. Crapper, N. Dombrowski, W. P. Jepson and G. A. D.
    Pyott, “A note on the growth of Kelvin-Helmholtz waves on
    thin liquid sheets,” J. Fluid Mech., vol. 57, part 4, pp. 671-672,
    1973.
    [26] H. C. Simmons, “The Atomization of Liquid, Principles and
    Methods,” Parker Hannifin Report No.7901/2-0, 1979.
    [27] F. R. Zhang, S. Wakabayashi and N. Tokuoka, “The Spray
    Structure from Swirl Atomizer (1st Report, General
    Characteristics and Structure of A Spray of Swirl Atomizers),”
    Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the
    Japan Society of Mechanical Engineers, Part B, Vol. 60, No.
    570, pp. 675-680, 1994.
    [28] A.A. Rizkalla ana A.H. Lefebvre,"Influence of Liquid
    Properties on Airblast Atomizer Spray
    105
    Characteristices,J.Eng.Power,pp. 173-179,April 1975.
    [29] A.A Rizkalla and A.H. Lefebvre,The Influence of Air and
    Liquid Properties on Airblast Atomization, J. Fluids Eng.,vol.
    97, pp. 316-320, 1975
    [30] Rizk, N. K. and Lefebvre, A. H., “Influence of Atomizer
    Design Feature on Mean Drop Size", AIAA Journal, Vol. 21,
    No. 8, pp. 1139-1142, 1983.
    [31] Beck, J., Lefebvre, A. H., and Koblish, T., “ Air Blast
    Atomization at Conditions of Low Air Velocity", Paper No,
    AIAA, 89-0217, 1989.
    [32] J. E. Beck, A. H. Lefebvre and T. R. Koblish, “Liquid Sheet
    Disintegration by Impinging Air Streams, "Atomization and
    Sprays, Vol. 1, No. 2, pp. 155-170, 1991.
    [33] J. E. Beck and A.H. Lefebvre, "Airblast Atomization at
    Conditions of Low Air Volcity,"J.Propulsion, vol. 7, NO. 2,
    March-April 1991.
    [34] M. Aligner and S. Wittig," Swirl and Counterswirl Efferts in
    Prefilming Airblast Atomization" , Trans. ASME, J. Eng.
    Power,vol. 102, pp.706-710, 1980.
    [35] Dorman , R. G. “The Atomization of Liquid in a Flat
    Spray , "British J. Appl. Phys. , Vol. 3 , pp. 189-192 ,
    106
    1952.
    [36] Fraser, R. P. Eisenklam , P. Dombrowski , N. and Hasson , D.
    “Drop Formation from Rapidly Moving Sheets , "A. I.
    Ch.E. J., Vol. 8, No. 5, pp. 672-680, 1962.
    [37] Dombrowski, N. and John, W. R. “ The Aerodynamic
    Instability and Disintegration of Viscous Liquid Sheets",
    Chem. Eng. Sci ., Vol. 18 , pp. 203-214 ,1963.
    [38] Sattelmayer, T. and Witting, S., “Internal Flow Effects in
    Prefilming Airblast Atomizers Mechanisms of Atomization and
    Droplet Spectra", ASME Journal of Engineering for Gas
    Turbine and Power, Vol. 108, pp. 465-472, 1986.
    [39] N.K. Rizk and A.H. Lefebvre, "Spray Characteristics of
    Plain-ject Airblast Atomizer , "Transtion of The Asme vol. 106 ,
    July 1984.
    [40] C.Press,A.K.Gupta ,and H.G. Semerjian,"Aerodynamic Effects
    on Fuel Spray Characteristics:Air-assist Atomizer , "
    HTD-vol. 104 , pp. 111-119 , 1988.
    [41] Lin, T. C., 2006, “Production of Metal Powder by Atomization
    Processes with Internal Impinging Mechanism”, Ph.D.
    dissertation, IAA, National Cheng Kung University, Taiwan,
    R.O.C.
    [42] Muh-Rong Wang, Tien-Chu Lin, Teng-San Lai, Ing-Ren Tseng,
    107
    2005, “Atomization Performance of an Atomizer with Internal
    Impingement”, JSME International Journal, Series II, Vol. 48,
    No. 4, pp.858-864.
    [43] Whitlow, J. D., and Lefebvre, A. H., 1993, “Effervescent
    Atomizer Operation and Spray Characteristics”, Atomization
    and Sprays, 3, pp. 137-156.
    [44] Nguyen, D. A., and Rhodes, M. J., 1998, “Producing Fine
    Drops of Water by Twin-Fluid Atomisation”, Powder
    Technology, 99, pp. 285-292.
    [45] Guo, L. J., Li, G. J., Chen, B., Chen, X. J., Papailiou, D. D.,
    and Panidis, T., 2002, “Study on Gas-Liquid Two-Phase
    Spraying Characteristics of Nozzles for the Humidification of
    Smoke”, Experimental Thermal and Fluid Science, 26, pp.
    715-722.
    [46] 郭子禎,環保洗淨新技術-CO2 的神奇應用,科學發展,400
    期,2006 年4 月,pp.30-35.
    [47] http://www.co2clean.com/index.html

    下載圖示 校內:2009-07-29公開
    校外:2009-07-29公開
    QR CODE