簡易檢索 / 詳目顯示

研究生: 林憲章
Lin, Sian-Jhang
論文名稱: 以化學氣相沉積法於LiAlO2基板上成長具鐵磁特性之非極性Zn1-xCoxO磊晶薄膜
Growth of ferromagnetic and non-polar Zn1-xCoxO epitaxial films on LiAlO2 substrates using chemical vapor deposition
指導教授: 吳季珍
Wu, Ji-jen
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 130
中文關鍵詞: 稀釋型磁性半導體鐵磁性非極性氧化鋅
外文關鍵詞: Diluted Magnetic Semiconductor(DMS), non-polar Zn1-xCoxO, Ferromagnetism
相關次數: 點閱:73下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採用thermal CVD法成功於LiAlO2(LAO)基板上成長非極性Zn1-xCoxO磊晶薄膜。Zn1-xCoxO薄膜之鈷含量可以藉由改變盛裝鈷有機金屬化合物器皿大小與反應物加熱溫度來調整。由XRD分析得知成長於LAO基板之Zn1-xCoxO薄膜具有沿m軸方向優勢成長。由XRD分析亦得知Zn1-xCoxO晶體之a軸長隨著鈷含量的增加而增加。而Raman光譜與XPS Co 2P3/2與2P1/2能譜分析則發現當Zn1-xCoxO薄膜之鈷含量(x)低於0.18時,薄膜中未有任何氧化鈷或鈷分離相之產生,顯示鈷於薄膜中乃取代氧化鋅結構中之鋅原子。另外,經吸收光譜分析得知Zn1-xCoxO薄膜具鈷離子於四面體晶格場的特性吸收峰,證實鈷的確取代氧化鋅結構中之鋅原子,且光學能隙隨鈷含量增加有紅位移現象。最後以超導量子干涉儀量測Zn0.89Co0.11O薄膜,得知測Zn0.89Co0.11O薄膜在室溫下具有鐵磁特性,且居禮溫度大於350K。

    Non-polor (m-plane) Zn1-xCoxO epitaxial films have been successfully deposited on LAO substrate using thermal chemical vapor deposition. Co contents can be varied by the flux of the Co organo-metallic precursor through adjusting the diameter and the temperature of the Co source container. XRD analyses reveal the Zn1-xCoxO films grown on LAO substrates are preferentially oriented in the m-axis direction (non-polar plane). In addition, the a-axis length in the lattice of Zn1-xCoxO films increases with Co contents increases. Raman and XPS analyzes show there is no Co and cobalt oxide structures appearing in the m-plane Zn1-xCoxO films at low Co contents (x<0.18). The absorption spectra of the Zn1-xCoxO films show the appearance of the Co2+ characteristic absorption bands in the tetrahedral crystal field, confirming that Co2+ substitutes for Zn2+ in ZnO lattice. A redshift in the absorption edge of the m-plane Zn1-xCoxO film with Co content increasing is observed as well. Room temperature ferromagnetism in Zn0.89Co0.11O film is observed and its Curie temperature is higher than 350K.

    總目錄 中文摘要 .................................................I 英文摘要.................................................II 致謝....................................................III 總目錄....................................................V 圖目錄....................................................X 表目錄................................................XVIII 第一章緒論................................................1 1-1 前言..................................................4 1-2 自旋電子學(Spintronics)...............................4 1-3 非極性氧化鋅特性......................................9 1-4 研究動機.............................................10 第二章基礎理論與文獻回顧.................................12 2-1 氧化鋅(ZnO)基本結構與特性............................12 2-2 成長非極性m-plane氧化鋅之基板........................16 2-3 化學沉積法(CVD method)...............................19 2-4 磁性來源與理論.......................................22 2-4.1 磁性的來源.........................................22 2-4.2 平均場理論(Mean Field Theory)......................23 2-5 磁性來源機制.........................................25 2-5.1交互巡迴式鐵磁性(Itinerant Ferromagnetism ).........25 2-5.2侷限載子式鐵磁性(Localized Carrier).................26 2-5.3雙交換耦合機制(Double Exchange).....................27 2-5.4束縛極化子模型(Bound Magnetic Polaron Model)........28 2-6 磁性總類.............................................30 2-6.1 磁滯曲線...........................................35 2-7 文獻回顧-氧化鋅為主之稀磁性半導體....................37 2-7.1 氧化鋅為主之摻雜Co元素之稀磁性半導體...............38 2-7.1-1氧空缺對鈷摻雜氧化鋅鐵磁性質的影響................42 2-7.1-2 載子濃度對n型ZnCoAlO薄膜鐵磁性質之影響...........44 2-7.1-3 Co 3d的價帶狀態對Zn1-xCoxO薄膜鐵磁性質之影響.....46 第三章 實驗參數與研究方法................................48 3-1 實驗流程.............................................48 3-2 系統設計.............................................48 3-2.1 反應氣體輸送裝置...................................49 3-2.2 Thermal CVD反應器..................................49 3-3 實驗材料.............................................50 3-3.1 反應物.............................................50 3-3.2 基板材料...........................................50 3-4 基板反應前處理.......................................50 3-5 實驗操作步...........................................51 3-6 分析與鑑定...........................................52 3-6.1 掃描式電子顯微鏡分析(SEM)..........................52 3-6.2電子背向繞射分析 (EBSD).............................52 3-6.3 X光繞射分析儀 (XRD)................................54 3-6.4拉曼光譜分析儀(Raman Spectroscopy)..................55 3-6.5 穿透式電子顯微鏡 (TEM).............................57 3-6.6紫外光-可見光吸收光譜儀(UV-Visible Absorption Spectrometer).................................... 57 3-6.7 歐傑電子能譜儀(AES)................................59 3-6.8 X光光電子能譜儀(XPS)...............................60 3-6.9超導量子干涉磁量儀(Superconducting Quantum Interference Device SQUID)...............................62 第四章 結果與討論........................................64 4-1 成長純ZnO薄膜........................................65 4-2 DCo對成長Zn1-xCoxO薄膜的影響.........................66 4-2.1 AES組成分析與SEM表面型態分析.......................66 4-2.2 XRD分析............................................72 4-2.3 Raman 分析.........................................73 4-2.4.吸收光譜分析.......................................74 4-3鈷反應物溫度對Zn1-xCoxO薄膜的影響.....................80 4-3.1 XRD分析............................................80 4-3.2 Raman分析..........................................81 4-3.3吸收光譜分析........................................81 4-4成長溫度對成長Zn1-xCoxO薄膜的影響.....................87 4-5 TEM分析..............................................90 4-6 XPS化學組態分析......................................92 4-7 Zn1-xCoxO薄膜之磁性分析..............................96 第五章 總結論............................................98 第六章 參考文獻.........................................100 附錄....................................................106

    [1] M.A. Haase, J, Qiu, J.M. Depuyde, and H. Cheng, Appl.Phys. Lett., 59, 1272 (1991).
    [2] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R.Russo, P. Yang, Science, 292, 1897 (2001).
    [3] J. Johnosn, H. Yan, R. Schaller, L. Haber, R. Saykally, P. Yang, J. Phys. Chem. B., 105, 11387 (2001).
    [4] H. T. Ng, J. Han, T. Yamada, P. Nguyen, Y. P. Chen, M. Meyyappan, Nano Lett. 4, 1247 (2004).
    [5] David D. Awschalom, 張有毅、陳企寧譯, 科學人, 7.45 (2002).
    [6] Nalamura, Kitamura, H. Umeya, A. Jia, M. Kobayashi, A. Yoshikawa, M. Shimotomai, Y. Kato, and K. Takahashi, Electronics Lett., 34, 2435 (1998).
    [7] S.A. Wolf, D.D. Awschalom et al., Science, 294, 1488 (2001).
    [8] H. Ohno, F. Matsukura and Y. Ohno et al. JSAP international, 5, 4 (2002).
    [9] H. Akinaga and H. Ohno, IEEE Trans. Nano., 1, 19 (2002).
    [10] S.Methfessel, D.C. Mattis, Handbook of Phys., 18, 389 (1968).
    [11] M.Tanaka, J. Crys. Growth, 278, 25 (2005).
    [12].S.J. Pearton, C.R. Abernathy, D.P. Norton, A.F.
    Hebard, Y.D. Park, L.A. Boatner, J.D. Budai, Mat. Science and Eng., R40, 137 (2003).
    [13] S. Datta and B. Das, Appl. Phys. Lett., 56, 665 (1990).
    [14] Z.Q. Qiu and S. D. Bader, J. Magn. Magn. Mater., 200, 664 (1999).
    [15] J. Kerr, Philos. Mag., 3, 339 (1877).
    [16] E.R. Moog and S.D. Bader, Superlattices Microstruct., 1, 543 (1985).
    [17] S.D. Bader, E.R. Moog, and P. Grunberg, J. Magn. Magn. Mater., 53, L295 (1986).
    [18]物理雙月刊 自旋的電性操控-淺談自旋軌道耦合28卷5期 林怡萍, P. 792 ( 2006).
    [19] 盧志權, 工業材料雜誌, 169, 117 (2001).
    [20] N. Baibich et al., Phys. Rev.Lett., 61, 2472 (1988).
    [21] Philip Ball, Nature, 404, 918 (2000).
    [22] J.S. Moodera, L.R. Kinder et al., Phys. Rev. Lett., 74, 3273 (1995).
    [23] T. Miyazaki et al., J. Magn. Magn. Mater., 151, 403 (1995).
    [24] D. M. Bagnall et al., Appl. Phys. Lett., 70, 2230 (1997).
    [25] P. Zu et al., Solid State Commun. , 130, 459 (1997).
    [26] A. Ohtomo et al., Mater. Sci. Eng. B., 56, 263 (1998).
    [27] Y. Chen et al., J. App. Phys., 84, 3912 (1998).
    [28] M. Satoh et al., Jpn. J. Appl. Phys., 38, 6873 (1999).
    [29] T. Makino, et al., Appl. Phys. Lett., 81, 2355 (2002).
    [30] C. Morhain et al., Phys. Rev. B, 72, 241305(R) (2005).
    [31] K. Koike, K. Hama, I. Nakashima, S. Sasa, M. Inoue, M. Yano, Jpn. J. Appl. Phys., 44, 3822 (2005).
    [31] T. Makino, A. Ohtomo, C. H. Chia, Y. Segawa, H. Koinuma and K. Kawasaki, Physica E, 21, 671 (2004).
    [33] T. Koida et al., Appl. Phys. Lett., 84, 1079(2004).
    [34] P. Walterelt & K. H. Ploog, Nature, 406, 865 (2000).
    [35] S.J. Peaton, C.R. Abernathy, G.T. Thaler, R.M. Frazier, D.P. Norton, F. Ren, Y.D. Park, J.M. Zavada, I.A. Buyanova, W.M. Chen, amd A.F. Hebard, J. Phys.: Condens. Matter, 16, R209 (2004).
    [36] K. Sato, H. K.Yoshida, Jpn. J. Appl. Phys., 40, L334 (2001).
    [37] S. W. Jung, W. I. Park, G. C. Yi, M. Kim, Adv. Mater., 15, 1358 (2003).
    [38] Y. Z. Peng, T. Liew, W.D. Song, C.W. An, K. L. Teo and T. C. Chong, J. Supercond., 18, 97 (2005).
    [39] X. C.Liu, E.W. Shi, Z.Z. Chen, H.W. Zhang, L.X. Song, H. Wang, S.D.Yao, J. Cryst. Growth, 296, 135 (2006).
    [40] G. J. Exarhos, S. K. Sharma, Thin Solid Films, 270, 27 (1995).
    [41] N. Fujimura, T. Nishihara, S. Goto, J. Xu, T. Ito, J. Cryst. Growth., 130, 269 (1993).
    [42] http://ncsr.csci-va.com/materials/zno.asp
    [43] A.R. Hutson, Phys. Rev., 108, 222 (1957).
    [44] R.A. Powell, W.E. Spicer, J.C. McMenamin , Phys. Rev. B, 6, 3056 (1972).
    [45] 楊明輝, 工業材料雜誌, 189期, P161, (2002).
    [46] G. Neumann, Phys. Status Solids, B105, 605 (1981).
    [47] D. C. Look, J. W. Hemsky, J. R. Sizelove, Phys. Rev. Lett., 82, 2552 (1999).
    [48] B. J. Lin, S. H. Bae, S. Y. Lee, S. Im, Mater. Sci. Eng. B., 71,301 (2000).
    [49] C. G. Van de Walle, Phys. Stat. Solidi. B., 299, 221 (2002).
    [50] H.L Harnagel, A.K. Jain and C. Jagadish, Semiconducting Transparent Thin Films, published by Institute of Physics Publication, 1955 Chap. 3 .
    [51] D. S. King, R. M. Nix, J. Catal., 160, 76 (1996).
    [52] T. Minami, Mater. Res. Soc. Bull., 25, 38 (2000).
    [53] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, T. Goto, Appl. Phys. Lett., 70, 2230 (1997).
    [54] J. Zhong, A. H. Kitai, P. Mascher, W. Puff, J. Electrochem. Soc., 140, 3644 (1993).
    [55] P.X. Gao and Z.L. Wang, J. Phys. Chem. B, 108, 7534 (2004).
    [56] T. Moriyama and S. Fujita, Jpn. J. Appl. Phys., 44, 7919 (2005).
    [57] H. Matsui et al., Appl. Phys. Lett. 87, 143109 (2005).
    [58] H. Matsui et al., J. Appl. Phys. 99, 124307 (2006).
    [59] H. Deng et al., J. Mater. Sci., 43, 312 (2008).
    [60] 鍾曉儀, 以化學氣相沉積法成長(10ī0)非極性氧化鋅薄膜於鋁酸鋰基板,碩士論文 中山大學.
    [61] James D. Plummer Silicon VLSI Technology.
    [62] T. Deitl ,and H. Ohno et al., Science, 287, 1019 (2000).
    [63] C. Zener et al., Phys. Rev., 81 440 (1950).
    [64] J. König, H. H. Lin, and A. H. MacDonald Phys. Rev. Lett., 86, 5637 (2001).
    [65] J. König, H. H. Lin, and A. H. MacDonald Phys. Rev. Lett., 84, 5628 (2000).
    [66] H. Akai et al. Phys. Rev. Lett., 81, 3002 (1998).
    [67] K. A. Griffin, A. B. Pakhomov, C. M. Wang, S. M. Heald, and Kannan M. Krishnan1 Phys. Rev. Lett., 94, 157204 (2005).
    [68] V. I. Litvinov and V. K. Dugaev Phys. Rev. Lett., 86, 5593 (2001).
    [69] Mona Berciu and R. N. Bhatt, Berciu and Bhatt Reply. Phys. Rev.Lett., 87, 107203 (2001).
    [70] Dana A. Schwartz and Daniel R. Gamelin , Adv. Mater., 16, 23 (2004).
    [71] C. Zener, Phys. Rev., 82, 403 (1951).
    [72] P. W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955).
    [73] J. M. D. Coey et al., Nature Materials, 4, 173 (2005).
    [74] 魏明通,無機化學,三民出版社,民73.
    [75] H. Ohno, Science, 281, 951 (1998).
    [76] M.Joseph, H. Tabaatqa and T. Kawai, Jpn. J. Appl. Phys., 38, L1205 (1999).
    [77] Kazunori Sato and Hiroshi Katayama-Yoshida, Jpn. J. Appl. Phys., 39, L555 (2000).
    [78] T. Kawai, K. Ueda et al., Appl. Phys. Lett., 79, 988 (2001).
    [79] J. H. Kim et al., J. Appl. Phys., 92, 6066 (2002).
    [80] H. S. Hsu and J. C. A. Huang, Y. H. Huang, Y. F. Liao, M. Z. Lin,and C. H. Lee, J. F. Lee,S. F. Chen, L. Y. Lai, and C. P. Liu, Appl.Phys. Lett., 88, 242507 (2006).
    [81] O.D. H. Kim, J. S. Yang, Y. S. Kim, T. W. Noh, S. D. Bu, S. I. Baik, Y. W. Kim, Y. D. Park, S. J. Pearton, J. Y. Kim, J. H. Park, H. J. Lin, C. T. Chen, and Y. J. Song, Phys. Rev. B, 71, 014440 (2005).
    [82] X H Xu, H J Blythe, M Ziese, A J Behan, J R Neal,
    A Mokhtari, R M Ibrahim, A M Fox and G A Gehring New J.Phy. 8 135 (2006)
    [83] J. W. Chiou, H. M. Tsai, C. W. Pao, K. P. Krishna Kumar, J. H. Chen, D. C. Ling, F. Z. Chien, and W. F. Pong, Appl. Phys. Lett., 90, 062103 (2007).
    [84] J. J. Wu, S. C. Liu, and M. H. Yang, Appl. Phys. Lett., 85, 1027 (2004).
    [85] 汪建民,材料分析,中國材料科學學會,台灣,1998.
    [86] 黃宏勝、林麗娟 工業材料雜誌 201期92年 P.99.
    [87] JASCO V-670 60 integrating Sphere Handware/Function Manual
    [88] Aicha A. R. Elshabini-Riad, Thin Film Technology Handbook, The McGraw-Hill Companies, Inc.
    [89] 楊鴻昌 科儀新知, 12, 72 (1991).
    [90]黃鐙興, 磊晶於鋁酸鋰基板的氧化鋅薄膜成長機構研究與缺陷分析, 碩士論文 中山大學.
    [91] X. Wang, J. Xu, X. Yu, Kun Xue Appl. Phys. Lett., 91, 031908. (2007).
    [92] K. P. Bhatti V. K. Malik, J. Mater. Sci. Mater. Electron., 19, 849 (2008).
    [93] Z.W. Jin et al. J. Cryst. Growth, 214, 55 (2000).
    [94] Y. Z. Peng, T. Liew, W. D. Song, C. W. An, K. L. Teo and T. C.Chong, J. Supercond. Incorp. Novel. Magn., 18, 97 (2005).
    [95] John F. Watts, John Wolstenholme , an introduction to surface analysis by XPS and AES, Wiley, (2003).
    [96] C. D. Wagner, W. M. Riggs, L. E. Davis, and J. F. Moulder, in Handbook of X-ray Photoelectron Spectroscopy, edited by G. E.Mulenberg p. 78.
    [97] H.J. Lee, S.Y. Jeong, C.H. Cho, C.H. Park, Appl. Phys. Lett., 81 4020 (2002).
    [98] S. A. Chambers, S. Thevuthasan, R. F. C. Farrow, R. F. Marks, J. U.Thiele, L. Folks, M. G. Samant, A. J. Kellock, N. Ruzycki, D. L.Ederer, and U. Diebold, Appl. Phys. Lett., 79, 3467 (2001).

    下載圖示 校內:2010-08-21公開
    校外:2010-08-21公開
    QR CODE