| 研究生: |
林憲章 Lin, Sian-Jhang |
|---|---|
| 論文名稱: |
以化學氣相沉積法於LiAlO2基板上成長具鐵磁特性之非極性Zn1-xCoxO磊晶薄膜 Growth of ferromagnetic and non-polar Zn1-xCoxO epitaxial films on LiAlO2 substrates using chemical vapor deposition |
| 指導教授: |
吳季珍
Wu, Ji-jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 稀釋型磁性半導體 、鐵磁性 、非極性氧化鋅 |
| 外文關鍵詞: | Diluted Magnetic Semiconductor(DMS), non-polar Zn1-xCoxO, Ferromagnetism |
| 相關次數: | 點閱:73 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究採用thermal CVD法成功於LiAlO2(LAO)基板上成長非極性Zn1-xCoxO磊晶薄膜。Zn1-xCoxO薄膜之鈷含量可以藉由改變盛裝鈷有機金屬化合物器皿大小與反應物加熱溫度來調整。由XRD分析得知成長於LAO基板之Zn1-xCoxO薄膜具有沿m軸方向優勢成長。由XRD分析亦得知Zn1-xCoxO晶體之a軸長隨著鈷含量的增加而增加。而Raman光譜與XPS Co 2P3/2與2P1/2能譜分析則發現當Zn1-xCoxO薄膜之鈷含量(x)低於0.18時,薄膜中未有任何氧化鈷或鈷分離相之產生,顯示鈷於薄膜中乃取代氧化鋅結構中之鋅原子。另外,經吸收光譜分析得知Zn1-xCoxO薄膜具鈷離子於四面體晶格場的特性吸收峰,證實鈷的確取代氧化鋅結構中之鋅原子,且光學能隙隨鈷含量增加有紅位移現象。最後以超導量子干涉儀量測Zn0.89Co0.11O薄膜,得知測Zn0.89Co0.11O薄膜在室溫下具有鐵磁特性,且居禮溫度大於350K。
Non-polor (m-plane) Zn1-xCoxO epitaxial films have been successfully deposited on LAO substrate using thermal chemical vapor deposition. Co contents can be varied by the flux of the Co organo-metallic precursor through adjusting the diameter and the temperature of the Co source container. XRD analyses reveal the Zn1-xCoxO films grown on LAO substrates are preferentially oriented in the m-axis direction (non-polar plane). In addition, the a-axis length in the lattice of Zn1-xCoxO films increases with Co contents increases. Raman and XPS analyzes show there is no Co and cobalt oxide structures appearing in the m-plane Zn1-xCoxO films at low Co contents (x<0.18). The absorption spectra of the Zn1-xCoxO films show the appearance of the Co2+ characteristic absorption bands in the tetrahedral crystal field, confirming that Co2+ substitutes for Zn2+ in ZnO lattice. A redshift in the absorption edge of the m-plane Zn1-xCoxO film with Co content increasing is observed as well. Room temperature ferromagnetism in Zn0.89Co0.11O film is observed and its Curie temperature is higher than 350K.
[1] M.A. Haase, J, Qiu, J.M. Depuyde, and H. Cheng, Appl.Phys. Lett., 59, 1272 (1991).
[2] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R.Russo, P. Yang, Science, 292, 1897 (2001).
[3] J. Johnosn, H. Yan, R. Schaller, L. Haber, R. Saykally, P. Yang, J. Phys. Chem. B., 105, 11387 (2001).
[4] H. T. Ng, J. Han, T. Yamada, P. Nguyen, Y. P. Chen, M. Meyyappan, Nano Lett. 4, 1247 (2004).
[5] David D. Awschalom, 張有毅、陳企寧譯, 科學人, 7.45 (2002).
[6] Nalamura, Kitamura, H. Umeya, A. Jia, M. Kobayashi, A. Yoshikawa, M. Shimotomai, Y. Kato, and K. Takahashi, Electronics Lett., 34, 2435 (1998).
[7] S.A. Wolf, D.D. Awschalom et al., Science, 294, 1488 (2001).
[8] H. Ohno, F. Matsukura and Y. Ohno et al. JSAP international, 5, 4 (2002).
[9] H. Akinaga and H. Ohno, IEEE Trans. Nano., 1, 19 (2002).
[10] S.Methfessel, D.C. Mattis, Handbook of Phys., 18, 389 (1968).
[11] M.Tanaka, J. Crys. Growth, 278, 25 (2005).
[12].S.J. Pearton, C.R. Abernathy, D.P. Norton, A.F.
Hebard, Y.D. Park, L.A. Boatner, J.D. Budai, Mat. Science and Eng., R40, 137 (2003).
[13] S. Datta and B. Das, Appl. Phys. Lett., 56, 665 (1990).
[14] Z.Q. Qiu and S. D. Bader, J. Magn. Magn. Mater., 200, 664 (1999).
[15] J. Kerr, Philos. Mag., 3, 339 (1877).
[16] E.R. Moog and S.D. Bader, Superlattices Microstruct., 1, 543 (1985).
[17] S.D. Bader, E.R. Moog, and P. Grunberg, J. Magn. Magn. Mater., 53, L295 (1986).
[18]物理雙月刊 自旋的電性操控-淺談自旋軌道耦合28卷5期 林怡萍, P. 792 ( 2006).
[19] 盧志權, 工業材料雜誌, 169, 117 (2001).
[20] N. Baibich et al., Phys. Rev.Lett., 61, 2472 (1988).
[21] Philip Ball, Nature, 404, 918 (2000).
[22] J.S. Moodera, L.R. Kinder et al., Phys. Rev. Lett., 74, 3273 (1995).
[23] T. Miyazaki et al., J. Magn. Magn. Mater., 151, 403 (1995).
[24] D. M. Bagnall et al., Appl. Phys. Lett., 70, 2230 (1997).
[25] P. Zu et al., Solid State Commun. , 130, 459 (1997).
[26] A. Ohtomo et al., Mater. Sci. Eng. B., 56, 263 (1998).
[27] Y. Chen et al., J. App. Phys., 84, 3912 (1998).
[28] M. Satoh et al., Jpn. J. Appl. Phys., 38, 6873 (1999).
[29] T. Makino, et al., Appl. Phys. Lett., 81, 2355 (2002).
[30] C. Morhain et al., Phys. Rev. B, 72, 241305(R) (2005).
[31] K. Koike, K. Hama, I. Nakashima, S. Sasa, M. Inoue, M. Yano, Jpn. J. Appl. Phys., 44, 3822 (2005).
[31] T. Makino, A. Ohtomo, C. H. Chia, Y. Segawa, H. Koinuma and K. Kawasaki, Physica E, 21, 671 (2004).
[33] T. Koida et al., Appl. Phys. Lett., 84, 1079(2004).
[34] P. Walterelt & K. H. Ploog, Nature, 406, 865 (2000).
[35] S.J. Peaton, C.R. Abernathy, G.T. Thaler, R.M. Frazier, D.P. Norton, F. Ren, Y.D. Park, J.M. Zavada, I.A. Buyanova, W.M. Chen, amd A.F. Hebard, J. Phys.: Condens. Matter, 16, R209 (2004).
[36] K. Sato, H. K.Yoshida, Jpn. J. Appl. Phys., 40, L334 (2001).
[37] S. W. Jung, W. I. Park, G. C. Yi, M. Kim, Adv. Mater., 15, 1358 (2003).
[38] Y. Z. Peng, T. Liew, W.D. Song, C.W. An, K. L. Teo and T. C. Chong, J. Supercond., 18, 97 (2005).
[39] X. C.Liu, E.W. Shi, Z.Z. Chen, H.W. Zhang, L.X. Song, H. Wang, S.D.Yao, J. Cryst. Growth, 296, 135 (2006).
[40] G. J. Exarhos, S. K. Sharma, Thin Solid Films, 270, 27 (1995).
[41] N. Fujimura, T. Nishihara, S. Goto, J. Xu, T. Ito, J. Cryst. Growth., 130, 269 (1993).
[42] http://ncsr.csci-va.com/materials/zno.asp
[43] A.R. Hutson, Phys. Rev., 108, 222 (1957).
[44] R.A. Powell, W.E. Spicer, J.C. McMenamin , Phys. Rev. B, 6, 3056 (1972).
[45] 楊明輝, 工業材料雜誌, 189期, P161, (2002).
[46] G. Neumann, Phys. Status Solids, B105, 605 (1981).
[47] D. C. Look, J. W. Hemsky, J. R. Sizelove, Phys. Rev. Lett., 82, 2552 (1999).
[48] B. J. Lin, S. H. Bae, S. Y. Lee, S. Im, Mater. Sci. Eng. B., 71,301 (2000).
[49] C. G. Van de Walle, Phys. Stat. Solidi. B., 299, 221 (2002).
[50] H.L Harnagel, A.K. Jain and C. Jagadish, Semiconducting Transparent Thin Films, published by Institute of Physics Publication, 1955 Chap. 3 .
[51] D. S. King, R. M. Nix, J. Catal., 160, 76 (1996).
[52] T. Minami, Mater. Res. Soc. Bull., 25, 38 (2000).
[53] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, T. Goto, Appl. Phys. Lett., 70, 2230 (1997).
[54] J. Zhong, A. H. Kitai, P. Mascher, W. Puff, J. Electrochem. Soc., 140, 3644 (1993).
[55] P.X. Gao and Z.L. Wang, J. Phys. Chem. B, 108, 7534 (2004).
[56] T. Moriyama and S. Fujita, Jpn. J. Appl. Phys., 44, 7919 (2005).
[57] H. Matsui et al., Appl. Phys. Lett. 87, 143109 (2005).
[58] H. Matsui et al., J. Appl. Phys. 99, 124307 (2006).
[59] H. Deng et al., J. Mater. Sci., 43, 312 (2008).
[60] 鍾曉儀, 以化學氣相沉積法成長(10ī0)非極性氧化鋅薄膜於鋁酸鋰基板,碩士論文 中山大學.
[61] James D. Plummer Silicon VLSI Technology.
[62] T. Deitl ,and H. Ohno et al., Science, 287, 1019 (2000).
[63] C. Zener et al., Phys. Rev., 81 440 (1950).
[64] J. König, H. H. Lin, and A. H. MacDonald Phys. Rev. Lett., 86, 5637 (2001).
[65] J. König, H. H. Lin, and A. H. MacDonald Phys. Rev. Lett., 84, 5628 (2000).
[66] H. Akai et al. Phys. Rev. Lett., 81, 3002 (1998).
[67] K. A. Griffin, A. B. Pakhomov, C. M. Wang, S. M. Heald, and Kannan M. Krishnan1 Phys. Rev. Lett., 94, 157204 (2005).
[68] V. I. Litvinov and V. K. Dugaev Phys. Rev. Lett., 86, 5593 (2001).
[69] Mona Berciu and R. N. Bhatt, Berciu and Bhatt Reply. Phys. Rev.Lett., 87, 107203 (2001).
[70] Dana A. Schwartz and Daniel R. Gamelin , Adv. Mater., 16, 23 (2004).
[71] C. Zener, Phys. Rev., 82, 403 (1951).
[72] P. W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955).
[73] J. M. D. Coey et al., Nature Materials, 4, 173 (2005).
[74] 魏明通,無機化學,三民出版社,民73.
[75] H. Ohno, Science, 281, 951 (1998).
[76] M.Joseph, H. Tabaatqa and T. Kawai, Jpn. J. Appl. Phys., 38, L1205 (1999).
[77] Kazunori Sato and Hiroshi Katayama-Yoshida, Jpn. J. Appl. Phys., 39, L555 (2000).
[78] T. Kawai, K. Ueda et al., Appl. Phys. Lett., 79, 988 (2001).
[79] J. H. Kim et al., J. Appl. Phys., 92, 6066 (2002).
[80] H. S. Hsu and J. C. A. Huang, Y. H. Huang, Y. F. Liao, M. Z. Lin,and C. H. Lee, J. F. Lee,S. F. Chen, L. Y. Lai, and C. P. Liu, Appl.Phys. Lett., 88, 242507 (2006).
[81] O.D. H. Kim, J. S. Yang, Y. S. Kim, T. W. Noh, S. D. Bu, S. I. Baik, Y. W. Kim, Y. D. Park, S. J. Pearton, J. Y. Kim, J. H. Park, H. J. Lin, C. T. Chen, and Y. J. Song, Phys. Rev. B, 71, 014440 (2005).
[82] X H Xu, H J Blythe, M Ziese, A J Behan, J R Neal,
A Mokhtari, R M Ibrahim, A M Fox and G A Gehring New J.Phy. 8 135 (2006)
[83] J. W. Chiou, H. M. Tsai, C. W. Pao, K. P. Krishna Kumar, J. H. Chen, D. C. Ling, F. Z. Chien, and W. F. Pong, Appl. Phys. Lett., 90, 062103 (2007).
[84] J. J. Wu, S. C. Liu, and M. H. Yang, Appl. Phys. Lett., 85, 1027 (2004).
[85] 汪建民,材料分析,中國材料科學學會,台灣,1998.
[86] 黃宏勝、林麗娟 工業材料雜誌 201期92年 P.99.
[87] JASCO V-670 60 integrating Sphere Handware/Function Manual
[88] Aicha A. R. Elshabini-Riad, Thin Film Technology Handbook, The McGraw-Hill Companies, Inc.
[89] 楊鴻昌 科儀新知, 12, 72 (1991).
[90]黃鐙興, 磊晶於鋁酸鋰基板的氧化鋅薄膜成長機構研究與缺陷分析, 碩士論文 中山大學.
[91] X. Wang, J. Xu, X. Yu, Kun Xue Appl. Phys. Lett., 91, 031908. (2007).
[92] K. P. Bhatti V. K. Malik, J. Mater. Sci. Mater. Electron., 19, 849 (2008).
[93] Z.W. Jin et al. J. Cryst. Growth, 214, 55 (2000).
[94] Y. Z. Peng, T. Liew, W. D. Song, C. W. An, K. L. Teo and T. C.Chong, J. Supercond. Incorp. Novel. Magn., 18, 97 (2005).
[95] John F. Watts, John Wolstenholme , an introduction to surface analysis by XPS and AES, Wiley, (2003).
[96] C. D. Wagner, W. M. Riggs, L. E. Davis, and J. F. Moulder, in Handbook of X-ray Photoelectron Spectroscopy, edited by G. E.Mulenberg p. 78.
[97] H.J. Lee, S.Y. Jeong, C.H. Cho, C.H. Park, Appl. Phys. Lett., 81 4020 (2002).
[98] S. A. Chambers, S. Thevuthasan, R. F. C. Farrow, R. F. Marks, J. U.Thiele, L. Folks, M. G. Samant, A. J. Kellock, N. Ruzycki, D. L.Ederer, and U. Diebold, Appl. Phys. Lett., 79, 3467 (2001).