研究生: |
葉香蘭 Yeh, Shiang-Lan |
---|---|
論文名稱: |
準分子雷射3D微結構加工應用於球閥式微幫浦 Excimer Laser Machining of 3D Microstructures with Application on Ball Valve Micro-pumps |
指導教授: |
李永春
Lee, Yung-Chun |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米科技暨微系統工程研究所 Institute of Nanotechnology and Microsystems Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 84 |
中文關鍵詞: | 準分子雷射加工 、球閥式微幫浦 、PDMS |
外文關鍵詞: | Excimer Laser Micromachining, Ball-vale micropump, PDMS |
相關次數: | 點閱:129 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用準分子雷射微細加工技術配合旋轉平台技術及其相關的特殊光罩設計方法,製作微小的3D軸對稱微結構,其目的是希望加工出剖面為任意曲線的3D軸對稱微小結構,以克服傳統微機電製程中僅限於2D結構的限制。實驗中選擇高分子材料(PC),加工結果顯示準分子雷射加工與旋轉平台法的確可以控制所需要的各種加工曲面,且加工精度也相當良好、速度非常快、表面平滑度佳。
本論文之主要目標為設計與製作可整合於生醫檢測晶片之微流體輸送系統。在設計過程中,為了使其具有生物相容性,在材料上選擇一種彈性聚合物材料-PDMS(Polydimethylsioxane)作為流道與腔體的結構,並利用其軟韌之特性來作為振動薄膜。針對球閥式微幫浦製作部分,本研究採用PDMS特殊製成,可節省製作之成本與時間,並利用電磁式為驅動源,以直徑為7 mm的磁鐵來帶動振動薄膜的振動,以比較腔體與流道在不同高度時,球閥式微幫浦的效能。
實驗結果顯示,腔體與流道高度在125 μm為最佳設計。量測方面採電壓15 V,頻率50 Hz進行量測,得到最佳體積流率為51.67 μL/min,背壓為13.4 mm-H2O。
This study applies excimer laser micro-machining technology for manufacturing 3D axially symmetrical micro-structures. It is based on a work-piece rotation method in conjunction with a contour mask imaging projection machining. Specially designed laser masks have been developed for machining various kinds of 3D surface profiles. The micromachining is carried out on polycarbonate (PC) material and the surface profiles have been characterized and compared with their theoretical counterparts. Good agreement is observed.
Based on the excimer laser machined 3D micro-structures, the goal of this thesis is to design and fabricate a ball valve micro-pump for fluidic transport and can be used in biochips. In order to make it more biocompatible, polydimethylsioxane (PDMS) material is used and its flexible material property is also excellent to form the moveable membrane of micro-pumps and micro-channel. The actuation the membrane is through magnetic force generated by an electromagnetic coil. Experiments have been carried out to determine the optimal design for the ball-vale micro-pump. At a channel height of 125 μm, a voltage of 15 V, and a frequency of 50 Hz, the micropump can achieve the best performance with a flow rate is 51.67 μL/min and a maximum backpressure of 13.4 mm-H2O.
[1]P. Tingrui, J. M. Scott, M. K. Eleanor, and Z. Babak, "A magnetically driven PDMS micropump with ball check-valves," Journal of Micromechanics and Microengineering, vol. 15, pp. 1021-1026, 2005.
[2]C. Yamahata, F. Lacharme, Y. Burri, and M. A. M. Gijs, "A ball valve micropump in glass fabricated by powder blasting," Sensors and Actuators B: Chemical, vol. 110, pp. 1-7, 2005.
[3]M. Shen, C. Yamahata, and M. A. M. Gijs, "A high-performance compact electromagnetic actuator for a PMMA ball-valve micropump," Journal of Micromechanics and Microengineering, vol. 18, pp. 25-31, 2008.
[4]J.-H. Park, K. Yoshida, and S. Yokota, "Resonantly driven piezoelectric micropump: Fabrication of a micropump having high power density," Mechatronics, vol. 9, pp. 687-702, 1999.
[5]S. Böhm, W. Olthuis, and P. Bergveld, "A plastic micropump constructed with conventional techniques and materials," Sensors and Actuators A: Physical, vol. 77, pp. 223-228, 1999.
[6]O. C. Jeong and S. S. Yang, "Fabrication and test of a thermopneumatic micropump with a corrugated p+ diaphragm," Sensors and Actuators A: Physical, vol. 83, pp. 249-255, 2000.
[7]E. Makino, T. Mitsuya, and T. Shibata, "Fabrication of TiNi shape memory micropump," Sensors and Actuators A: Physical, vol. 88, pp. 256-262, 2001.
[8]D. Xu, L. Wang, G. Ding, Y. Zhou, A. Yu, and B. Cai, "Characteristics and fabrication of NiTi/Si diaphragm micropump," Sensors and Actuators A: Physical, vol. 93, pp. 87-92, 2001.
[9]K. Junwu, Y. Zhigang, P. Taijiang, C. Guangming, and W. Boda, "Design and test of a high-performance piezoelectric micropump for drug delivery," Sensors and Actuators A: Physical, vol. 121, pp. 156-161, 2005.
[10]周信宏, "直立式無閥壓電微幫浦," 碩士, 機械工程研究所, 國立雲林科技大學, 雲林, 2006.
[11]S. K. Searles and G. A. Hart, "Stimulated emission at 281.8 nm from XeBr," Applied Physics Letters, vol. 27, pp. 243-245, 1975.
[12]N.G. Basov, V.A. Danilychev, Yu.M. Popov, and D. D. Khodkevich, "Laser operating in the vacuum region of the spectrum by excitation of liquid xenon with an electron beam," J.of Experimental and theoretical physic Letters, vol. 12, pp. 329-331, 1970.
[13]A. A. Tseng, Y.-T. Chen, and K.-J. Ma, "Fabrication of high-aspect-ratio microstructures using excimer laser," Optics and Lasers in Engineering, vol. 41, pp. 827-847, 2004.
[14]J. H. Brannon, "Excimer-laser ablation and etching," Circuits and Devices Magazine, IEEE, vol. 6, pp. 18-24, 1990.
[15]國科會精密儀器發展中心, 微機電系統技術與應用. 台北: 全華科技圖書公司, 2005.
[16]A. Braun, K. Zimmer, B. Hösselbarth, J. Meinhardt, F. Bigl, and R. Mehnert, "Excimer laser micromachining and replication of 3D optical surfaces," Applied Surface Science, vol. 127–129, pp. 911-914, 1998.
[17]郭晉良, "準分子雷射加工微型3D立體結構," 碩士, 機械工程學系, 國立成功大學, 台南, 2002.
[18]D. Armani, C. Liu, and N. Aluru, "Re-configurable fluid circuits by PDMS elastomer micromachining," in Micro Electro Mechanical Systems, 1999. MEMS '99. Twelfth IEEE International Conference on, 1999, pp. 222-227.
[19]Y. Zhou and F. Amirouche, "An Electromagnetically-Actuated All-PDMS Valveless Micropump for Drug Delivery," Micromachines, vol. 2, pp. 345-355, 2011.
[20]Goodfellow . CATALOGUE, Goodfellow . Inc, PA,USA, 1998.
[21]Arona, "SIDS Initial Assessment Report For SIAM 17," S. E. H. a. S. Council, Ed., Italy, 2003.
[22]K. C. Tang, E. Liao, W. L. Ong, J. D. S. Wong, A. Agarwal, R. Nagarajan, and L. Yobas, "Evaluation of bonding between oxygen plasma treated polydimethyl siloxane and passivated silicon," Journal of Physics: Conference Series, vol. 34, pp. 155-161, 2006.
[23]V. Sunkara, D.-K. Park, H. Hwang, R. Chantiwas, S. A. Soper, and Y.-K. Cho, "Simple room temperature bonding of thermoplastics and poly(dimethylsiloxane)," Lab on a Chip, vol. 11, pp. 962-965, 2011.
[24]J. Goulpeau, D. Trouchet, A. Ajdari, and P. Tabeling, "Experimental study and modeling of polydimethylsiloxane peristaltic micropumps," Journal of Applied Physics, vol. 98, pp. 044914-9, 2005.
[25]M. Andrew, N. Yael, and D. Uri, "A membrane micropump electrostatically actuated across the working fluid," Journal of Micromechanics and Microengineering, vol. 15, pp. 2309-2316, 2005.
[26]C. Yamahata, C. Lotto, E. Al-Assaf, and M. A. M. Gijs, "A PMMA valveless micropump using electromagnetic actuation," Microfluidics and Nanofluidics, vol. 1, pp. 197-207, 2005.
[27]F. Guo-Hua and K. Eun Sok, "Piezoelectrically actuated dome-shaped diaphragm micropump," Journal of Microelectromechanical Systems, vol. 14, pp. 192-199, 2005.
[28]T. T. Nguyen, N. S. Goo, Y. S. Yoon, and K. J. Yoon, "A novel lightweight piezo-composite actuator micropump," Proceedings of SPIE, vol. 6172, pp. 279-287, 2006.
[29]J. S. Yoon, J. W. Choi, I. H. Lee, and M. S. Kim, "A valveless micropump for bidirectional applications," Sensors and Actuators A: Physical, vol. 135, pp. 833-838, 2007.
[30]L. S. Jang, Y. J. Li, S. J. Lin, Y. C. Hsu, W. S. Yao, M. C. Tsai, and C. C. Hou, "A stand-alone peristaltic micropump based on piezoelectric actuation," Biomed Microdevices, vol. 9, pp. 185-94, 2007.
[31]A. Geipel, A. Doll, P. Jantscheff, N. Esser, U. Massing, P. Woias, and F. Goldschmidtboeing, "A novel two-stage backpressure-independent micropump: modeling and characterization," Journal of Micromechanics and Microengineering, vol. 17, pp. 949-959, 2007.
[32]O. C. Jeong, S. W. Park, S. S. Yang, and J. J. Pak, "Fabrication of a peristaltic PDMS micropump," Sensors and Actuators A: Physical, vol. 123-124, pp. 453-458, 2005.