| 研究生: |
王郁翔 Wang, Yu-hsiang |
|---|---|
| 論文名稱: |
銦基界面散熱材料與銅、鎳基材之界面反應與相平衡 Interfacial reactions and phase equilibria between indium thermal interface material and Cu and Ni substrates |
| 指導教授: |
林士剛
Lin, Shih-Kang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 129 |
| 中文關鍵詞: | 界面散熱材料 、Cu/In/Ni 、三明治反應偶 、界面反應 、相平衡 |
| 外文關鍵詞: | Thermal interface materials (TIMs), interfacial reactions, Cu/In/Ni, Phase equilibria |
| 相關次數: | 點閱:122 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著三維度電子構裝(3D IC)以及高效能元件的發展,熱管理(Thermal Management)已經成為元件可靠度最重要的議題之一。為了將產生的熱有效的從電子元件裡排出,界面散熱材料(Thermal Interface materials, TIMs)被用來填補界面之間的孔隙以降低接觸熱阻。界面散熱材料有許多種類,但是用銲料做成的銲料界面散熱材料(Solder-TIMs)有許多優點,因此更適合被使用在電子封裝中;In具有許多的優點,例如導熱係數高、壓縮性好容易使用等,因此In在目前的先進電子元件中被廣泛使用。Cu是常見的散熱片材料而Ni在凸塊底層金屬中常被當作擴散阻礙層,因此Cu/In/Ni三明治結構在電子構裝的散熱系統中是不可或缺的部分,且其中的界面反應更可成為In基界面散熱材料 可靠度的一大依據,因此Cu/In/Ni三明治結構成為本論文所深入探討的系統。
而當In基界面散熱與基材接合時,其界面反應的研究與可靠度十分相關,本研究中利用Cu/In/Ni三明治結構反應偶 ,於280 oC以及360 oC 下進行不同的時間的退火反應,模擬迴銲過程中所發生的反應,並利用Cu-In、In-Ni以及Cu-Ni二元熱力學模型,建構出Cu-In-Ni三元等溫橫截面圖來探討界面反應中介金屬相的生成、變化以及機制。
另外,本研究中針對Cu/In/Ni 三明治反應偶360 oC界面反應中生成Cu11In9相的奇特現象,於In-rich corner製備了10組Cu-In-Ni的三元合金,於360 oC下進行長時間退火達相平衡,並透過分析樣品的金相、組成、及X-ray繞射等資料,來確定合金中之生成相,利用這些實驗數據來優化Cu-In-Ni 360 oC等溫橫截面圖,並利用此等溫橫截面圖來探討Cu/In/Ni三明治結構反應偶於360 oC下界面反應的生成機制。
With many advantages, pure indium is usually used as Thermal interfacial materials (TIMs) to applied to minimize the contact thermal resistances. Copper and nickel are commonly used in electronics. As a result, the Cu/In/Ni sandwich structure is an essential component in the heat dissipation system. In this study, three different sandwich-type diffusion couples, namely Cu/In/Cu, Ni/In/Ni, and Cu/In/Ni, were annealed at 280 °C and 360 °C for various lengths of time. The IMCs were then identified with the corresponding phase diagrams. For the asymmetric Cu/In/Ni couples, a porous layer with tiny grains and special rod-like grains Cu11In9 were formed at the Cu/In interface; however, a thin planar Ni3In7 and discontinuous bulky Cu11In9 grains were found at the In/Ni interface. The microstructural evolution and the mechanism of phase transformations are discussed in this paper. Furthermore, a tentative Cu-In-Ni ternary phase diagram is proposed to elucidate the progression of Cu/In/Ni interfacial reactions. In addition, series of ternary Cu-In-Ni alloys were designed, fabricated, and heat-treated at 360 °C. And a new ternary compound was found in the Cu-In-Ni 360 oC isothermal section.
1. Schelling, P. K., L. Shi and K. E. Goodson (2005), “Managing heat for electronics,”Materials Today, 8(6) pp. 30-35.
2. Deppisch, C., T. Fitzgerald, A. Raman, F. Hua, C. Zhang, P. Liu and M. Miller (2006), “The material optimization and reliability characterization of an indium-solder thermal interface material for CPU packaging,”Jom, 58(6) pp. 67-74.
3. Nakayama, W. (1986), “Thermal management of electronic equipment: a review of technology and research topics,”Applied Mechanics Reviews, 39(12) pp. 1847-1868.
4. Nakayama, W. (1996), “Thermal management of electronic equipment: research needs in the mid-1990s and beyond,”Applied Mechanics Reviews, 49(10S) pp. S167-S174.
5. Garimella, S. V., Y. K. Joshi, A. Bar-Cohen, R. Mahajan, K. C. Toh, V. P. Carey, M. Baelmans, J. Lohan, B. Sammakia and F. Andros (2002), “Thermal challenges in next generation electronic systems - summary of panel presentations and discussions,”Components and Packaging Technologies, IEEE Transactions on, 25(4) pp. 569-575.
6. http://www.bit-tech.net/hardware/2009/02/16/all-about-tim/1.
7. Prasher, R. (2006), “Thermal Interface Materials: Historical Perspective, Status, and Future Directions,”Proceedings of the IEEE, 94(8) pp. 1571-1586.
8. Fletcher, L. S. (1990), A review of thermal enhancement techniques for electronic systems, in Thermal Phenomena in Electronic Systems. p. 136-148.
9. Chung, D. D. L. (2001), “Thermal interface materials,”Journal of Materials Engineering and Performance, 10(1) pp. 56-59.
10. Dani, A., J. C. Matayabas and P. Koning. Thermal Interface Material Technology Advancements and Challenges: An Overview. in ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference. 2005. American Society of Mechanical Engineers.
11. Sarvar, F., D. C. Whalley and P. P. Conway. Thermal Interface Materials - A Review of the State of the Art. in Electronics Systemintegration Technology Conference. 2006.
12. Liu, J., P. Kumar, I. Dutta, R. Raj, R. Sidhu, M. Renavikar and R. Mahajan (2011), “Liquid phase sintered Cu–In composite solders for thermal interface material and interconnect applications,”Journal of Materials Science, 46(21) pp. 7012-7025.
13. Li, J. F., P. A. Agyakwa and C. M. Johnson (2011), “Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process,”Acta Materialia, 59(3) pp. 1198-1211.
14. Dutta, I., R. Raj, P. Kumar, T. Chen, C. M. Nagaraj, J. Liu, M. Renavikar and V. Wakharkar (2009), “Liquid Phase Sintered Solders with Indium as Minority Phase for Next Generation Thermal Interface Material Applications,”Journal of Electronic Materials, 38(12) pp. 2735-2745.
15. Kumar, P., I. Dutta, R. Raj, M. Renavikar and V. Wakharkar. Novel liquid phase sintered solders with indium as minority phase for next generation thermal interface material applications. in Thermal Issues in Emerging Technologies. 2008.
16. Whittemore, A. and R. C. Lasky (2008), “Virtues of Indium as a Thermal Interface material,”Chip Scale Review, pp. 56-59.
17. 陳信文, 吳蒔涵, 許秀鳳 and 李守維 無鉛銲料的基礎性質(二)界面反應與物理性質. 18 ed: 電子材料.
18. Kodentsov, A. A., G. F. Bastin and F. J. J. Van Loo (2001), “The diffusion couple technique in phase diagram determination,”Journal of Alloys and Compounds, 320(2) pp. 207-217.
19. Mehrer, H., Diffusion in Binary Intermetallics, Diffusion in Solids(2007), Springer Berlin Heidelberg. p. 341-369.
20. Kidson, G. V. (1961), “Some aspects of the growth of diffusion layers in binary systems,”Journal of Nuclear Materials, 3(1) pp. 21-29.
21. Kim, D. G., C. Y. Lee and S. B. Jung (2004), “Interfacial reactions and intermetallic compound growth between indium and copper,”Journal of Materials Science-Materials in Electronics, 15(2) pp. 95-98.
22. Kao, C. R. (1997), “Microstructures developed in solid-liquid reactions: using Cu-Sn reaction, Ni-Bi reaction, and Cu-In reaction as examples,”Materials Science and Engineering: A, 238(1) pp. 196-201.
23. Su, L. H., Y. W. Yen, C. C. Lin and S. W. Chen (1997), “Interfacial reactions in molten Sn/Cu and molten In/Cu couples,”Metallurgical and Materials Transactions B, 28(5) pp. 927-934.
24. Yu, C. L., S. S. Wang and T. H. Chuang (2002), “Intermetallic compounds formed at the interface between liquid indium and copper substrates,”Journal of Electronic Materials, 31(5) pp. 488-493.
25. Wojewoda, J., P. Zieba, M. Faryna, W. Gust, E. J. Mittemeijer and L. Litynska (2004), “Characterization of Interfacial Reactions in Cu/In/Cu Joints,”Microchimica Acta, 145(1-4) pp. 107-110.
26. Sommadossi, S., W. Gust and E. J. Mittemeijer (2003), “Phase characterisation and kinetic behaviour of diffusion soldered Cu/In/Cu interconnections,”Materials Science and Technology, 19(4) pp. 528-534.
27. Sommadossi, S., L. Litynska, P. Zieba, W. Gust and E. J. Mittemeijer (2003), “Transmission electron microscopy investigation of the microstructure and chemistry of Si/Cu/In/Cu/Si interconnections,”Materials Chemistry and Physics, 81(2-3) pp. 566-568.
28. Tseng, Y. H., M. S. Yeh and T. H. Chuang (1999), “Interfacial reactions between liquid indium and nickel substrate,”Journal of Electronic Materials, 28(2) pp. 105-108.
29. Chang, Y. A., S. L. Chen, F. Zhang, X. Y. Yan, Fanyou Xie, R. Schmid-Fetzer and W. A. Oates (2004), “Phase diagram calculation: past, present and future,”Progress in Materials Science, 49(3–4) pp. 313-345.
30. 余永寧 金屬學原理: 冶金工業出版社.
31. Okamoto, H (2005), “Cu-In (copper-indium),”Journal of Phase Equilibria and Diffusion, 26(6) pp. 645-645.
32. Hertz, J., K. Aissaoui and L. Bouirden (2002), “A thermodynamic optimization of the Cu-In system,”Journal of Phase Equilibria, 23(6) pp. 473-479.
33. Liu, H. S., Y. Cui, K. Ishida, X. J. Liu, C. P. Wang, I. Ohnuma, R. Kainuma and Z. P. Jin (2002), “Thermodynamic assessment of the Cu-In binary system,”Journal of Phase Equilibria, 23(5) pp. 409-415.
34. Durussel, P., G. Burri and P. Feschotte (1997), “The binary system Ni-In,”Journal of Alloys and Compounds, 257(1–2) pp. 253-258.
35. Okamoto, H. (1999), “In-Ni (Indium-Nickel),”Journal of Phase Equilibria, 20(5) pp. 540-540.
36. Waldner, P. and H. Ipser (2002), “Thermodynamic modeling of the Ni-In system,”Zeitschrift für Metallkunde, 93(8) pp. 825-832.
37. Chakrabarti, D. J., D. E. Laughlin, S. W. Chen and Y. A. Chang (1991), Phase Diagrams of Binary Nickel Alloys: ASM International.
38. Mey, S (1992), “Thermodynamic re-assessment of the Cu-Ni system,”CALPHAD, 16 pp. 255-260.
39. Weibke, F. (1939), “Über die Legierungen des Galliums und Indiums,”Z. Metallkd., 31 pp. 228-230.
40. Raman, R. S. K., R. K. Gupta and M. N Sujir (1964), “Lattice constant of B8 structure in Cu2In-Ni2In alloys,”Journal of Scientiffic Research, 14 pp. 95-99.
41. Liu, Z. K. (2009), “First-principles calculations and CALPHAD modeling of thermodynamics,”Journal of Phase Equilibria and Diffusion, 30(5) pp. 517-534.
42. Dinsdale, A. T. (1991), “SGTE data for pure elements,”CALPHAD, 15(4) pp. 317-425.
43. Hillert, M. (2001), “The compound energy formalism,”Journal of Alloys and Compounds, 320(2) pp. 161-176.
44. Redlich, O. and A. T. Kister (1948), “Thermodynamics of Nonelectrolyte Solutions-xyt relations in a Binary System,”Industrial & Engineering Chemistry, 40(2) pp. 341-345.
45. Cao, W., S. L. Chen, F. Zhang, K. Wu, Y. Yang, Y. A. Chang, R. Schmid-Fetzer and W. A. Oates (2009), “PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation,”CALPHAD, 33(2) pp. 328-342.
46. Gur, D. and M. Bamberger (1998), “Reactive isothermal solidification in the Ni-Sn system,”Acta Materialia, 46(14) pp. 4917-4923.
47. Schaefer, M., W. Laub, R. A. Fournelle and J. Liang (1997), “Evaluation of Intermetallic Phase Formation and Concurrent Dissolution of Intermetallic During Reflow Soldering,”Design and reliability of solders and solder interconnections pp. 247-258.
48. Huang, M. L., T. Loeher, A. Ostmann and H. Reichl (2005), “Role of Cu in dissolution kinetics of Cu metallization in molten Sn-based solders,”Applied Physics Letters, 86(18) pp. 181908-181908-3.
49. Hong, K. K., J. B. Ryu, C. Y. Park and J. Y. Huh (2008), “Effect of cross-interaction between Ni and Cu on growth kinetics of intermetallic compounds in Ni/Sn/Cu diffusion couples during aging,”Journal of Electronic Materials, 37(1) pp. 61-72.
50. Ho, C. E., S. C. Yang and C. R. Kao, Interfacial reaction issues for lead-free electronic solders, Lead-Free Electronic Solders(2007), Springer. p. 155-174.
51. Weibke, F. and I. Pleger (1937), “Die Ausscheidungshärtung (Vergütung) im System Kupfer-Indium und ihre Beeinflussung durch Nickel und Cadmium,”Zeitschrift für anorganische und allgemeine Chemie, 231(1-2) pp. 197-216.