簡易檢索 / 詳目顯示

研究生: 蔣宜安
Chiang, Yi-An
論文名稱: 絲氨酸/精氨酸蛋白質B52參與白蝦Dscam的選擇性剪接
Serine/arginine (SR)-rich protein B52 is involved in Dscam alternative splicing in Litopenaeus vannamei
指導教授: 王涵青
Wang, Han-Ching
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 70
中文關鍵詞: 白蝦唐氏綜合症細胞粘附分子選擇性剪接機制絲氨酸/精氨酸蛋白質B52白點症病毒
外文關鍵詞: Litopenaeus vannamei, Down syndrome cell adhesion molecules (Dscam), alternative splicing, serine/arginine - rich protein B52, white spot syndrome virus (WSSV)
相關次數: 點閱:222下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來研究發現在節肢動物中Down syndrome cell adhesion molecules (Dscam)分子,具備有專一性辨認抗原之特性,因而被識為參與類適應性免疫機制的一員 (alternative adaptive immunity)。而節肢動物之Dscam分子能夠具有此專一性辨認抗原的能力,是由於此基因能夠透過未成熟RNA之選擇性剪接機制,產生出變異性極高的蛋白質,進而達到此免疫能力。而參與選擇性剪接機制的調控因子,主要可分為剪接活化因子及剪接抑制因子,目前研究最多的剪接活化因子為絲氨酸/精氨酸蛋白質家族 (Serine/arginine - rich proteins family)。先前研究認為絲氨酸/精氨酸蛋白家族的B52蛋白,可能參與活化果蠅Dscam的選擇性剪接,因此本研究進一步探討B52蛋白是否能參與白蝦Dscam之選擇性剪接機制。首先本研究已鑑定出第一個白蝦 (Litopenaeus vannamei) B52基因 (LvB52)。接著我們將白蝦活體內LvB52基因沈默化,來探討LvB52在白蝦Dscam的選擇性剪接之角色,結果顯示當LvB52基因弱化後,LvDscam Ig2、Ig3及Ig7 之 isoform多樣性呈現降低趨勢。另外也發現在LvDscam細胞質尾區的第三元素區 (element 3) 的外顯子跳躍機制 (exon skipping) 有顯著性增加。此外本研究發現,當白點症病毒感染白蝦後24小時,LvDscam以及LvB52基因表現量皆有上升的現象。而若將LvB52基因弱化後再感染白點症病毒24小時,則發現此時LvDscam的基因表現量會受到抑制,另外也發現LvDscam主要與病原體結合的變異區域Ig3 之多樣性也有顯著減少現象。由以上結果可推論出在健康及受到白點症病毒感染的白蝦中,LvB52的確皆能調節LvDscam的選擇性剪接機制。

    Over the last decade, arthropod Down syndrome cell adhesion molecules (Dscam) have been known to involve in the mechanism of alternative adaptive immunity. Through the alternative splicing, it can be generated tens of thousands of isoforms to specific recognize pathogens. Some alternative splicing factors have been reported to regulate the alternative splicing of Dscam, including the splicing activators and repressors. In this study, we identified the serine/arginine - rich protein B52, an alternative splicing activator, which is involved in the alternative splicing of Litopenaeus vannamei Dscam (LvDscam). We first characterized the B52 gene from L. vannamei, named LvB52. Subsequently, in vivo dsRNA silencing of LvB52 induced element 3 exon exclusion in the LvDscam cytoplasmic tail, but no abnormal exclusions in the Ig2-Ig3 and Ig7 regions or the transmembrane region. In addition, LvB52 silencing was associated with a decrease in the complexity of LvDscam Ig2, Ig3 and Ig7 regions. After white spot syndrome virus (WSSV) infection, a parallel increase in the expression of total LvDscam, tail-less LvDscam, membrane-bound LvDscam and LvB52 was observed after 24 hpi. Besides, the LvDscam expression and the exon complexity of its Ig3 region were decreased obviously in LvB52-silenced shrimp after 24h post WSSV infection. Taken together, our data suggest that LvB52 acts as a splicing activator that regulates the LvDscam AS events in both healthy and WSSV infection conditions.

    Chinese Abstract…………………………………………………………….I English Abstract…………………………………………………………...III Acknowledgment…………………………………………………………....V Table of Contents………………………………………………………VIII Table Index…………………………………………………………………IX Figure Index……………………………………………………………….X Introduction………………………………………………………………….1 Materials and Methods……………………………………………………...8 Result………………………………………………………………………..16 Discussion…………………………………………………………………...27 References…………………………………………………………………..38 Figure legends………………………………………………………………45 Supplementary Information……………………………………………….69

    Birney E, Kumar S, Krainer AR (1993) Analysis of the RNA-recognition motif and RS and RGG domains: conservation in metazoan pre-mRNA splicing factors. Nucleic Acids Res 21: 5803-5816.
    Black DL (2000) Protein diversity from alternative splicing: a challenge for bioinformatics and post-genome biology. Cell 103: 367-370.
    Brites D, McTaggart S, Morris K, Anderson J, Thomas K, et al. (2008) The Dscam homologue of the crustacean Daphnia is diversified by alternative splicing like in insects. Mol Biol Evol 25: 1429-1439.
    Bruce SR, Dingle RW, Peterson ML (2003) B-cell and plasma-cell splicing differences: a potential role in regulated immunoglobulin RNA processing. RNA 9: 1264-1273.
    Champlin DT, Frasch M, Saumweber H, Lis JT (1991) Characterization of a Drosophila protein associated with boundaries of transcriptionally active chromatin. Genes Dev 5: 1611-1621.
    Chen IT, Aoki T, Huang YT, Hirono I, Chen TC, et al. (2011) White spot syndrome virus induces metabolic changes resembling the warburg effect in shrimp hemocytes in the early stage of infection. J Virol 85: 12919-12928.
    Chou PH, Chang HS, Chen IT, Lin HY, Chen YM, et al. (2009) The putative invertebrate adaptive immune protein Litopenaeus vannamei Dscam (LvDscam) is the first reported Dscam to lack a transmembrane domain and cytoplasmic tail. Dev Comp Immunol 33: 1258-1267.
    Chou PH, Chang HS, Chen IT, Lee CW, Hung HY, et al. (2011) Penaeus monodon Dscam (PmDscam) has a highly diverse cytoplasmic tail and is the first membrane-bound shrimp Dscam to be reported. Fish Shellfish Immunol 30: 1109-1123.
    Dong Y, Taylor HE, Dimopoulos G (2006) AgDscam, a hypervariable immunoglobulin domain-containing receptor of the Anopheles gambiae innate immune system. PLoS Biol 4: e229.
    Dong Y, Cirimotich CM, Pike A, Chandra R, Dimopoulos G. (2012) Anopheles NF-κB-regulated splicing factors direct pathogen-specific repertoires of the hypervariable pattern recognition receptor AgDscam. Cell Host Microbe 12: 521-530.
    El Shikh ME, El Sayed RM, Szakal AK, Tew JG (2009) T-independent antibody responses to T-dependent antigens: a novel follicular dendritic cell-dependent activity. J Immunol 182: 3482-3491.
    Gabut M, Dejardin J, Tazi J, Soret J (2007) The SR family proteins B52 and dASF/SF2 modulate development of the Drosophila visual system by regulating specific RNA targets. Mol Cell Biol 27: 3087-3097.
    Graveley, B.R. (2005) Mutually exclusive splicing of the insect Dscam pre-mRNA directed by competing intronic RNA secondary structures. Cell 123: 65–73.
    Hattori D, Millard SS, Wojtowicz WM, Zipursky SL (2008) Dscam-mediated cell recognition regulates neural circuit formation. Annu Rev Cell Dev Biol 24: 597-620.
    Hoffman BE, Lis JT (2000) Pre-mRNA splicing by the essential Drosophila protein B52: tissue and target specificity. Mol Cell Biol 20: 181-186.
    Huang J, Wang Y, Raghavan S, Feng S, Kiesewetter K, et al. (2011) Human down syndrome cell adhesion molecules (DSCAMs) are functionally conserved with Drosophila Dscam [TM1] isoforms in controlling neurodevelopment. Insect Biochem Mol Biol 41: 778-787.
    Johnson JM, Castle J, Garrett-Engele P, Kan Z, Loerch PM, et al. (2003) Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 302: 2141-2144.
    Kim S, Shi H, Lee DK, Lis JT (2003) Specific SR protein-dependent splicing substrates identified through genomic SELEX. Nucleic Acids Res 31: 1955-1961.
    Lee CW, Chen IT, Chou PH, Hung HY, Wang KC (2012) Heterogeneous nuclear ribonucleoprotein hrp36 acts as an alternative splicing repressor in Litopenaeus vannamei Dscam. Dev Comp Immunol 36: 10-20.
    Long JC, Caceres JF (2009) The SR protein family of splicing factors: master regulators of gene expression. Biochem J 417: 15-27.
    Lynch KW (2004) Consequences of regulated pre-mRNA splicing in the immune system. Nat Rev Immunol 4: 931-940.
    Martinez-Contreras R, Cloutier P, Shkreta L, Fisette JF, Revil T, et al. (2007) hnRNP proteins and splicing control. Adv Exp Med Biol 623: 123-147.
    Martinez NM, Pan Q, Cole BS, Yarosh CA, Babcock GA, et al. (2012) Alternative splicing networks regulated by signaling in human T cells. RNA 18: 1029-1040.
    May GE, Olson S, McManus CJ, Graveley BR. (2011) Competing RNA secondary structures are required for mutually exclusive splicing of the Dscam exon 6 cluster. RNA 17:222-229.
    McHeyzer-Williams LJ, McHeyzer-Williams MG (2005) Antigen-specific memory B cell development. Annu Rev Immunol 23: 487-513.
    Nilsen TW, Graveley BR (2010) Expansion of the eukaryotic proteome by alternative splicing. Nature 463: 457-463. Review.
    Olson S, Blanchette M, Park J, Savva Y, Yeo GW, et al. (2007) A regulator of Dscam mutually exclusive splicing fidelity. Nat Struct Mol Biol 14: 1134-1140.
    Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40: 1413-1415.
    Park JW, Parisky K, Celotto AM, Reenan RA, Graveley BR (2004) Identification of alternative splicing regulators by RNA interference in Drosophila. Proc Natl Acad Sci U S A 101: 15974-15979.
    Peterson ML (2007) Mechanisms controlling production of membrane and secreted immunoglobulin during B cell development. Immunol Res 37: 33-46.
    Ring HZ, Lis JT (1994) The SR protein B52/SRp55 is essential for Drosophila development. Mol Cell Biol 14: 7499-7506.
    Schmucker D, Clemens JC, Shu H, Worby CA, Xiao J, et al. (2000) Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101: 671-684.
    Schmucker D, Chen B (2009) Dscam and DSCAM: complex genes in simple animals, complex animals yet simple genes. Genes Dev 23: 147-156.
    Shi L, Yu HH, Yang JS, Lee T (2007) Specific Drosophila Dscam juxtamembrane variants control dendritic elaboration and axonal arborization. J Neurosci 27: 6723-6728.
    Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, et al. (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456: 470-476.
    Wang J, Ma X, Yang JS, Zheng X, Zugates CT, et al. (2004) Transmembrane/juxtamembrane domain-dependent Dscam distribution and function during mushroom body neuronal morphogenesis. Neuron 43: 663-672.
    Wang KC, Kondo H, Hirono I, Aoki T (2010) The Marsupenaeus japonicus voltage-dependent anion channel (MjVDAC) protein is involved in white spot syndrome virus (WSSV) pathogenesis. Fish Shellfish Immunol 29: 94-103.
    Watson FL, Püttmann-Holgado R, Thomas F, Lamar DL, Hughes M, et al. (2005) Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science 309: 1874-1878.
    Watthanasurorot A, Jiravanichpaisal P, Liu H, Söderhäll I, Söderhäll K (2011) Bacteria-Induced Dscam Isoforms of the Crustacean, Pacifastacus leniusculus. PLoS Pathog. 7: e1002062.
    Yang JS, Bai JM, Lee T (2008) Dynein-dynactin complex is essential for dendritic restriction of TM1-containing Drosophila Dscam. PLoS One 3: e3504.
    Yeh YC, Lee CW, Pan YW, Hsu YJ, Hung HY, et al. (2012) Identification and characterization of DSCAM isoforms isolated from orange-spotted grouper Epinephelus coioides. Dev Comp Immunol 38: 148-59.
    Yu HH, Yang JS, Wang J, Huang Y, Lee T (2009) Endodomain diversity in the Drosophila Dscam and its roles in neuronal morphogenesis. J Neurosci 29: 1904-1914.
    Zahler AM, Lane WS, Stolk JA, Roth MB (1992) SR proteins: a conserved family of pre-mRNA splicing factors. Genes Dev 6: 837-847.

    無法下載圖示 校內:2022-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE