| 研究生: |
蔡仲堯 Tsai, Chung-Yao |
|---|---|
| 論文名稱: |
科學園區的污染排放對周界空氣品質之影響 Impact of Pollution Emissions from the Science Park on the Ambient Air Quality |
| 指導教授: |
吳義林
Wu, Yee-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 科學園區 、實地採樣 、PM2.5 、酸鹼氣體 、空氣品質影響 |
| 外文關鍵詞: | Science Park, On-site Sampling, PM2.5, Acid-base Gases, Air Quality Impact |
| 相關次數: | 點閱:22 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年來,台灣在細懸浮微粒(PM2.5)上已經有成熟的法規並且透過不斷加嚴的標準,使其逐年的在下降,取得可觀的減量成效。細懸浮微粒的形成涉及了許多不同的反應及反應物,故其不同污染源的排放特性對於細懸浮微粒的形成來說尤為重要。而台灣在近幾年來的產業結構日漸不同,隨著高科技產業的發展,其廠區以及科學園區也不斷的在增長擴展。不同於傳統工業區的燃燒排放,高科技產業所產生的污染物主要為無機酸、鹼性氣體及揮發性有機溶劑,酸鹼性氣體在排放至大氣之後會發生化學反應產生衍生性氣膠,使周界空氣中的細懸浮微粒質量濃度上升。
本研究於2022年11月以及2024年11月底至12月初至科學園區內針對上下風處分別對大氣中PM2.5的質量濃度、水溶性離子成份、碳成份及氣態污染物中的氨氣、氫氟酸、醋酸、硝酸以及與硫酸進行採樣分析。並透過採樣結果以及後續分析指標嘗試解析科技園區之污染排放對空氣品質的影響。
2022年PM2.5質量濃度平均為7.83 μg/m3;2024年平均為11.57 μg/m3,兩年相差3.74 μg/m3,已解析成份分別佔69.3%及78.7%。其主要成份總碳成份、水溶性離子及重金屬成份在2022年分別佔了總質量濃度的9.9、56.8、2.6%;2024年分別為30.6、44.8、3.3%,其中以有機碳、元素碳、硫酸根、銨根、硝酸根及元素鐵在這當中為最主要的成份。氣態污染物採樣當中,大部分批次皆以氨氣濃度最高,醋酸濃度次之。而兩年間2024年的有機碳及元素碳濃度都比2022年高;銨根及硝酸根也是2024年比2022年高,鈉離子及氯離子則是比2022年低;2024年除了氫氟酸以及醋酸的濃度是比2022年低,其他酸鹼氣體濃度皆是上升的,且氨氣的濃度上升了特別多。
後續篩選上下風測站方位與風向相同之資料,2022年共篩選出10個批次和2024年篩選出4個批次,並以這些採樣結果下去計算分析指標並解析其結果。2022年在採樣區域應未有多餘的排放;而硫酸根的上升可能為氣團移動當中緩慢氧化形成硫酸鹽類所導致的;2024年採樣區域內有氨氣及硝酸的排放,硝酸銨會由園區內排放的氨氣及硝酸反應生成,造成PM2.5質量濃度上升。
This study conducted field sampling campaigns in a science park in 2022 and 2024, targeting both upwind and downwind locations. The analysis focused on atmospheric PM2.5 mass concentration, water-soluble ionic species, carbonaceous components, and selected gaseous pollutants including ammonia (NH₃), hydrogen fluoride (HF), acetic acid (CH₃COOH), nitric acid (HNO₃), and sulfuric acid (H₂SO₄). Based on the sampling results and subsequent analytical indicators, the study aimed to investigate the impact of emissions from the science park on ambient air quality.The results showed that the major components of PM2.5 were organic carbon (OC), sulfate (SO₄²⁻), ammonium (NH₄⁺), nitrate (NO₃⁻), and elemental iron (Fe). Among the gaseous pollutants, ammonia had the highest concentration, followed by acetic acid. Further analysis of the 2024 data indicated the presence of ammonia and nitric acid emissions in the study area. These two gases could react to form ammonium nitrate (NH₄NO₃), contributing to an increase in PM2.5 mass concentration.
1. Cesari, D., Donateo, A., Conte, M., & Contini, D. (2016). Inter-comparison of source apportionment of PM10 using PMF and CMB in three sites nearby an industrial area in central Italy. Atmospheric Research, 182, 282-293.
2. Chein, H., Chen, T. M., Aggarwal, S. G., Tsai, C. J., & Huang, C. C. (2004). Inorganic acid emission factors of semiconductor manufacturing processes. Journal of the Air & Waste Management Association, 54(2), 218-228.
3. Chein, H., & Chen, T. M. (2003). Emission characteristics of volatile organic compounds from semiconductor manufacturing. Journal of the Air & Waste Management Association, 53(8), 1029-1036.
4. Chow, J. C., Watson, J. G., Kuhns, H., Etyemezian, V., Lowenthal, D. H., Crow, D., ... & Green, M. C. (2004). Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational study. Chemosphere, 54(2), 185-208.
5. Chu, S. H. (2004). PM2.5 episodes as observed in the speciation trends network. Atmospheric Environment, 38(31), 5237-5246.
6. Eom, Y. S., Hong, J. H., Lee, S. J., Lee, E. J., Cha, J. S., Lee, D. G., & Bang, S. A. (2006). Emission factors of air toxics from semiconductor manufacturing in Korea. Journal of the Air & Waste Management Association, 56(11), 1518-1524.
7. Gunawardana, C., Goonetilleke, A., Egodawatta, P., Dawes, L., & Kokot, S. (2012). Source characterization of road dust based on chemical and mineralogical composition. Chemosphere, 87(2), 163-170.
8. Ohta, S., & Okita, T. (1990). A chemical characterization of atmospheric aerosol in Sapporo. Atmospheric Environment. Part A. General Topics, 24(4), 815-822.
9. Pilinis, C., & Seinfeld, J. H. (1988). Development and evaluation of an Eulerian photochemical gas-aerosol model. Atmospheric Environment (1967), 22(9), 1985-2001.
10. Peng, J. L., Yeh, M. P., Liu, K. H., Chen, T., Chuang, T. S., Lee, S. L., & Tung, K. L. (2025). Source and characteristics of inorganic acidic gases and aerosols emission in a semiconductor plant. Separation and Purification Technology, 354, 128806.
11. Sander, S. P., & Seinfeld, J. H. (1976). Chemical kinetics of homogeneous atmospheric oxidation of sulfur dioxide. Environmental Science & Technology, 10(12), 1114-1123.
12. Seinfeld, J. H. and S. N. Pandis (1998). Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons.
13. Stelson, A. w. and Seinfeld, J. H. (1982) Relative humidity and temperature dependence of the ammonium nitrate dissociation constant, Atmos. Environ., 16, 983-993.
14. Stockwell, W. R., & Calvert, J. G. (1983). The mechanism of the HO-SO2 reaction. Atmospheric Environment (1967), 17(11), 2231-2235.
15. Tsai, Y. I., & Cheng, M. T. (1999). Visibility and aerosol chemical compositions near the coastal area in Central Taiwan. Science of the total environment, 231(1), 37-51.
16. U.S. Environmental Protection Agency. (n.d.). Particulate matter (PM) basics. https://www.epa.gov/pm-pollution/particulate-matter-pm-basics
17. Yeh, M. P., Wu, L. F., Fan, E. T., Chen, T., Chuang, T. S., Lee, S. L., & Tung, K. L. (2024). Characteristics of inorganic acid emission from various generation semiconductor manufacturing factories. Chemosphere, 347, 140745.
18. Zhang, G., Ding, C., Jiang, X., Pan, G., Wei, X., & Sun, Y. (2020). Chemical compositions and sources contribution of atmospheric particles at a typical steel industrial urban site. Scientific reports, 10(1), 7654.
19. 吳義林、蔡德明、王錫豐(2015)。《細懸浮微粒(PM2.5)成分與形成速率分析》,環保署委託研究報告(編號:EPA-102-FA11-03-A082)。臺北:行政院環保署。
20. 吳義林、賴信志、蔡德明(2019)。《空氣污染物氨調查及減量示範計畫》,環保署委託研究報告。
校內:2030-08-20公開