| 研究生: |
黃婉愉 Huang, Wan-Yu |
|---|---|
| 論文名稱: |
探討NADPH氧化酶在敗血症所引起癲癇發作易感性及認知功能改變 Role of NADPH oxidases in sepsis-induced changes in seizure susceptibility and cognitive function |
| 指導教授: |
許桂森
Hsu, Kuei-Sen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2018 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 全身性發炎反應 、癲癇發作 、認知功能障礙 、NADPH氧化酶 、細胞素 、Diphenyleneiodonium 、脂多糖 |
| 外文關鍵詞: | Systemic inflammation, Seizure Cognition dysfunction, NADPH oxidase, Cytokine, Diphenyleneiodonium, Lipopolysaccharide |
| 相關次數: | 點閱:65 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
文獻指出敗血症相關之全身性發炎反應可以誘發神經元過度興奮(hyperexcitability),進而導致增加癲癇發生之感受性,並影響產生認知功能障礙。腦內的小膠質細胞(microglia)會因為全身炎症反應迅速地被活化並釋放出許多種不同的細胞素(cytokines)和信息因子,進而放大發炎反應,導致神經功能障礙之發生。由於腦中NADPH氧化酶(NADPH oxidase)透過產生活性氧類(reactive oxygen species;如超氧化物負離子)具有促進小膠質細胞活化的作用,因此我們假設阻斷NADPH 氧化酶(NOX2)活性可能具有改善敗血症所引起增加癲癇發生感受性及認知功能缺陷的作用。
為了印證此假說,我們利用調節NADPH 氧化酶NOX2重要亞單位基因缺損小鼠 p47phox (p47phox−/−)、gp91phox (gp91phox−/−) 及 NOX2-selective 抑制劑 diphenyleneiodonium (DPI)來作為達到減少NADPH氧化酶衍生活性氧化物產生的模式。首先,以腹腔內注射脂多糖 (Lipopolysaccharides,LPS)引起全身發炎反應後,利用戊四氮 (pentylenetetrazol,PTZ) 腹腔注射來誘發癲癇發作並進行三組小鼠(野生型, p47phox−/−及gp91phox−/−)之癲癇敏感性比較。在認知障礙功能研究上以八爪迷宮(Radial arm maze)進行小鼠群空間學習和記憶之比較。我們發現gp91phox−/−和 p47phox−/−基因缺損小鼠相較於野生型小鼠,在敗血症後對 PTZ 所誘發癲癇的敏感性明顯較弱。與野生型小鼠相比,gp91phox−/−和 p47phox−/−小鼠表達較低的 proconvulsive 細胞素[包括 tumor necrosis factor-α (TNFα)、interleukin-1β (IL-1β)、interleukin-6 (IL-6) 及 chemokine (C-C motif) ligand 2 (CCL2)]。在 LPS 注射後, DPI的投予明顯地降低了野生型小鼠對 PTZ 誘發癲癇的敏感性,並減少了小膠質細胞活化和腦內proconvulsive 細胞素的濃度。 此外,DPI 也會抑制LPS注射以後所誘導 gp91phox 轉錄的作用。 p47phox−/−小鼠與野生型小鼠相比,在敗血症後認知功能損害明顯地較弱。DPI投予也具有明顯降低LPS注射以後所誘導認知功能障礙的作用,減少了膠質細胞活化和腦內細胞素濃度以及突觸的喪失。
綜合此等研究發現我們認為 NADPH 氧化酶活化對敗血症後小鼠癲癇發作的敏感性及認知障礙的發展具有促進之作用。因此抑制 NOX2 可能是一種具有潛力作為減少敗血症相關之中樞發炎反應、 神經元過度興奮及癲癇發作之有效治療策略。此外,抑制 NOX2 也可以是進一步防止敗血症後產生漸進性神經元失調和認知功能之損害。
Systemic inflammation associated with sepsis can induce neuronal hyperexcitability, leading to enhanced seizure predisposition and increase the process of cognitive impairment. Brain microglia are rapidly activated in response to systemic inflammation and, in this activated state, release multiple cytokines and signaling factors that amplify the inflammatory response and increase neuronal dysfunction. NADPH oxidase (NOX) enzymes promote microglial activation through the generation of reactive oxygen species (ROS), such as superoxide anion. We hypothesized that NOX isoforms, particularly NOX2, are potential targets for prevention of sepsis-associated seizures and cognition deficits.
In order to reduce NADPH oxidase 2-derived ROS production, mice with deficits of NOX regulatory subunit/NOX2 organizer p47phox (p47phox−/−) or NOX2 major subunit gp91phox (gp91phox−/−) were used or the NOX2-selective inhibitor diphenyleneiodonium (DPI) was used to treat wild-type (WT) mice. Systemic inflammation was induced by intraperitoneal injection of lipopolysaccharide (LPS). Seizure susceptibility was compared among mouse groups in response to intraperitoneal injection of pentylenetetrazole (PTZ). Spatial learning and memory was then compared among mouse groups using RAM task. We found that increased susceptibility to PTZ-induced seizures following sepsis was significantly attenuated in gp91phox−/− and p47phox−/− mice compared with WT mice. Both gp91phox−/− and p47phox−/− mice exhibited reduced microglia activation and lower brain induction of multiple proconvulsive cytokines, including tumor necrosis factor-α (TNFα), interleukin-1β (IL-1β), interleukin-6 (IL-6) and chemokine (C-C motif) ligand 2 (CCL2), compared with WT mice. Administration of DPI following LPS injection significantly attenuated the increased susceptibility to PTZ-induced seizures and reduced both microglia activation and brain proconvulsive cytokine concentrations compared with vehicle-treated controls. DPI also inhibited the upregulation of gp91phox transcripts following LPS injection. Moreover, cognitive impairment following sepsis was significantly attenuated in p47phox-/- mice compared to WT mice. Similar to p47phox knockout, DPI administration significantly attenuated the cognitive impairment and reduced glia activation and brain cytokine concentrations as well as loss of synaptic protein, compared to vehicle-treated controls within 10 days following LPS injection.
In conclusion, our results suggest that NADPH oxidases can contribute to the development of increased seizure susceptibility and the progression of cognitive impairment in mice after sepsis. Pharmacologic inhibition of NOX may be a promising therapeutic approach to reducing sepsis-associated neuroinflammation, neuronal hyperexcitability, and seizures. In addition, pharmacologic inhibition of NOX2 would be a potential therapeutic strategy to prevent progressive neuronal dysregulation, and hippocampal cognitive impairment after sepsis.
Allen NJ, Eroglu C. (2017) Cell Biology of Astrocyte-Synapse Interactions. Neuron 96(3):697-708.
Akarsu ES, Ozdayi S, Algan E, Ulupinar F. (2006) The neuronal excitability timedependently changes after lipopolysaccharide administration in mice:possible role of cyclooxygenase-2 induction. Epilepsy Res. 71:181–187.
Angeloni C, Prata C, Dalla Sega FV, Piperno R, Hrelia S. (2015) Traumatic brain injury and NADPH oxidase: a deep relationship. Oxid Med Cell Longev. 2015:370312.
Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 29:1303-1310.
Becerra-Calixto A, Cardona-Gómez GP. (2017) The Role of Astrocytes in Neuroprotection after Brain Stroke: Potential in Cell Therapy. Front Mol Neurosci. 10:88.
Bedard K, Krause KH.( 2007 )The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 87:245–313.
Belarbi K, Jopson T, Tweedie D, Arellano C, Luo W, Greig NH, Rosi S. (2012) TNF-α protein synthesis inhibitor restores neuronal function and reverses cognitive deficits induced by chronic neuroinflammation. Journal of Neuroinflammation 9:23.
Benoit M, Desnues B, Mege JL. (2008) Macrophage polarization in bacterial infections. J. Immunol. 181:3733–3739.
Benson S, Brinkhoff A, Lueg L, Roderigo T, Kribben A, Wilde B, Witzke O, Engler H, Schedlowski M, Elsenbruch S. (2017) Effects of acute systemic inflammation on the interplay between sad mood and affective cognition. Transl Psychiatry. 7(12):1281.
Bi H, Sze CI. (2002) N-methyl-D-aspartate receptor subunit NR2A and NR2B messenger RNA levels are altered in the hippocampus and entorhinal cortex in Alzheimer's disease. J Neurol Sci. 200:11-18.
Binder DK, Croll SD, Gall CM, Scharfman HE. (2001) BDNF and epilepsy: too much of a good thing? Trends Neurosci. 24:47-53.
Block ML, Hong JS. (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol. 76:77-98
Block ML, Zecca L, Hong JS. (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 8:57-69.
Block ML, Hong JS. (2007) Chronic microglial activation and progressive dopaminergic neurotoxicity. Biochem Soc Trans. 35:1127-1132a.
Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ. (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The A.C.C.P./S.C.C.M. Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 101:1644-1655.
Brown DI, Griendling KK. (2009) Nox proteins in signal transduction. Free Radic Biol Med. 47:1239–1253.
Budni J, Bellettini-Santos T, Mina F, Garcez ML, Zugno AI. (2015) The involvement of BDNF, NGF and GDNF in aging and Alzheimer's disease. Aging Dis. 6(5):331-341.
Cagnin A, Brooks DJ, Kennedy AM, Gunn RN, Myers R, Turkheimer FE. (2001) In-vivo measurement of activated microglia in dementia. Lancet 358:461-467.
Carvey PM, Chang Q, Lipton JW, Ling Z. (2003) Prenatal exposure to the bacteriotoxin lipopolysaccharide leads to long-term losses of dopamine neurons in offspring: A potential, new model of Parkinson's disease. Front Biosci. 8:S826–S837.
Cerri C, Genovesi S, Allegra M, Pistillo F, Puntener U, Guglielmotti A, Perry VH, Bozzi Y, Caleo M. (2016) The Chemokine CCL2 Mediates the Seizure-enhancing Effects of Systemic Inflammation. J Neurosci. 36:3777-3788.
Chen H, Kim GS, Okami N, Narasimhan P, Chan PH. (2011) NADPH oxidase is involved in post-ischemic brain inflammation. Neurobiol Dis. 42:341-348.
Chen PS, Peng GS, Li G, Yang S, Wu X, Wang CC, et al. (2006) Valproate protects dopaminergic neurons in midbrain neuron/glia cultures by stimulating the release of neurotrophic factors from astrocytes. Mol Psychiatry 11:1116-1125.
Chéret C, Gervais A, Lelli A, Colin C, Amar L, Ravassard P, Mallet J, Cumano A, Krause KH, Mallat M. (2008) Neurotoxic activation of microglia is promoted by a nox1-dependent NADPH oxidase. J Neurosci. 28:12039–12051.
Cibelli M, Fidalgo AR, Terrando N, Ma D, Monaco C, Feldmann M, et al. (2010) Role of interleukin-1β in postoperative cognitive dysfunction. Ann Neurol. 68(3):360–368.
Corda MG, Orlandi M, Lecca D, Carboni G, Frau V, Giorgi O.(1991) Pentylenetetrazol-induced kindling in rats: effect of GABA function inhibitors. Pharmacol Biochem Behav. 40:329–333.
Cunningham C, Sanderson DJ. (2008) Malaise in the water maze: untangling the effects of LPS and IL-1beta on learning and memory. Brain Behav Immun. 22(8):1117–1127.
Dellinger RP, Carlet JM, Masur H, Gerlach H, Calandra T, Cohen J, Gea-Banacloche J, Keh D, Marshall JC, Parker MM, Ramsay G, Zimmerman JL, Vincent JL, Levy MM. (2004) Surviving Sepsis Campaign guidelines for Management of severe sepsis and septic shock. Crit. Care Med. 32(3):858-873.
Dhir A. (2012) Pentylenetetrazol (PTZ) kindling model of epilepsy. Curr Protoc Neurosci. 9:9–37.
D’Mello C, Le T, Swain MG. (2009) Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factoralpha signaling during peripheral organ inflammation. J Neurosci. 29:2089–2102.
Dohi K, Ohtaki H, Nakamachi T, Yofu S, Satoh K, Miyamoto K, Song D, Tsunawaki S, Shioda S, Aruga T. (2010) Gp91phox (NOX2) in classically activated microglia exacerbates traumatic brain injury. J Neuroinflammation 7:41.
Donzis EJ, Tronson NC. (2014) Modulation of learning and memory by cytokines: signaling mechanisms and long term consequences. Neurobiol Learn Mem. 115:68-77.
Eklind S, Mallard C, Arvidsson P, Hagberg H. (2005) Lipopolysaccharide induces both a primary and a secondary phase of sensitization in the developing rat brain. Pediatr Res. 58:112–116.
Erickson MA, Banks WA. (2011) Cytokine and chemokine responses in serum and brain after single and repeated injections of lipopolysaccharide: multiplex quantification with path analysis. Brain Behav Immun. 25:1637-1648.
Fink MP, Heard SO. (1990) Laboratory models of sepsis and septic shock. J Surg Res. 49:186-196.
Forman HJ, Torres M, Fukuto J. (2002) Redox signaling. Mol Cell Biochem. 234-235(1-2):49-62.
Fox C, Dingman A, Derugin N, Wendland MF, Manabat C, Ji S, Ferriero DM, Vexler ZS. (2005) Minocycline confers early but transient protection in the immature brain following focal cerebral ischemia-reperfusion. J Cereb Blood Flow Metab. 25:1138–1149.
Galic MA, Riazi K, Heida JG, Mouihate A, Fournier NM, Spencer SJ, Kalynchuk LE, Teskey GC, Pittman QJ. (2008) Postnatal inflammation increases seizure susceptibility in adult rats. J Neurosci. 28:6904-6913.
Galic MA, Riazi K, Pittman QJ. (2012) Cytokines and brain excitability. Front Neuroendocrinol. 33:116-125.
Gao HM, Hong JS. (2008) Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol. 29:357-365
Godbout JP, Johnson RW. (2006) Age and neuroinflammation: a lifetime of psychoneuroimmune consequences. Neurol Clin. 24:521–538.
Hagberg H, Mallard C. (2005) Effect of inflammation on central nervous system development and vulnerability. Curr Opin Neurol. 18:117–123.
Hanisch UK. (2002) Microglia as a source and target of cytokines. Glia 40:140–155.
Harre EM, Galic MA, Mouihate A, Noorbakhsh F, Pittman QJ. (2008) Neonatal inflammation produces selective behavioural deficits and alters N-methyl-D-aspartate receptor subunit mRNA in the adult rat brain. Eur J Neurosci. 27:644-653.
Heida JG, Pittman QJ. (2005) Causal links between brain cytokines and experimental febrile convulsions in the rat. Epilepsia 46:1906–1913.
Heller JP, Rusakov DA. (2015) Morphological plasticity of astroglia: Understanding synaptic microenvironment. Glia 63(12):2133-2151.
Hernandes MS, D'Avila JC, Trevelin SC, Reis PA, Kinjo ER, Lopes LR, Castro-Faria-Neto HC, Cunha FQ, Britto LR, Bozza FA. (2014) The role of Nox2-derived ROS in the development of cognitive impairment after sepsis. J Neuroinflammation 11:36.
Ho YH, Lin YT, Wu CW, Chao YM, Chang AY, Chan JY. (2015 ) Peripheral inflammation increases seizure susceptibility via the induction of neuroinflammation and oxidative stress in the hippocampus. J Biomed Sci. 22:46.
Hou L, Zhou X, Zhang C, Wang K, Liu X, Che Y, Sun F, Li H, Wang Q, Zhang D, Hong JS. (2017) NADPH oxidase-derived H2O2 mediates the regulatory effects of microglia on astrogliosis in experimental models of Parkinson's disease. Redox Biol. 12:162-170.
Hu X, Ballo L, Pietila L, Viesselmann C, Ballweg J, Lumbard D, Stevenson M, Merriam E, Dent EW. (2011) BDNF-induced increase of PSD-95 in dendritic spines requires dynamic microtubule invasions. J Neurosci. 31(43):15597-15603.
Idro R, Gwer S, Kahindi M, Gatakaa H, Kazungu T, Ndiritu M, Maitland K, Neville BG, Kager PA, Newton CR. (2008) The incidence, aetiology and outcome of acute seizures in children admitted to a rural Kenyan district hospital. BMC Pediatr. 8:5.
Iwashyna TJ, Ely EW, Smith DM, Langa KM. (2010) Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA. 304:1787-1794.
Jackson JC, Hopkins RO, Miller RR, Gordon SM, Wheeler AP, Ely EW. (2009) Acute respiratory distress syndrome, sepsis, and cognitive decline: a review and case study. South Med J. 102:1150-1157.
Ji MH, Qiu LL, Tang H, Ju LS, Sun XR, Zhang H, Jia M, Zuo ZY, Shen JC, Yang JJ. (2015) Sepsis-induced selective parvalbumin interneuron phenotype loss and cognitive impairments may be mediated by NADPH oxidase 2 activation in mice. J Neuroinflammation 12:182.
Kan H, Hu W, Wang Y, Wu W1, Yin Y, Liang Y, Wang C, Huang D, Li W. (2015 ) NADPH oxidase-derived production of reactive oxygen species is involved in learning and memory impairments in 16-month-old female rats. Mol Med Rep. 12(3):4546-4553.
Kim WG, Mohney RP, Wilson B, Jeohn GH, Liu B, Hong JS. (2000) Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci. 20(16):6309-6316.
Kishida, K. T., M. Pao, S. M. Holland, and E. Klann. ( 2005) NADPH oxidase is required for NMDA receptor-dependent activation of ERK in hippocampal area CA1. J. Neurochem. 94:299–306.
Kishida KT, Hoeffer CA, Hu D, Pao M, Holland SM, Klann E. (2006) Synaptic plasticity deficits and mild memory impairments in mouse models of chronic granulomatous disease. Mol Cell Biol. 26(15):5908-5920.
Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G; SCCM/ESICM/ACCP/ATS/SIS. (2003) 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med. 31(4):1250-1256.
Li G, Bauer S, Nowak M, Norwood B, Tackenberg B, Rosenow F, Knake S, Oertel WH, Hamer HM. (2011) Cytokines and epilepsy. Seizure 20:249-256.
Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Münch AE, Chung WS, Peterson TC, Wilton DK, Frouin A, Napier BA, Panicker N, Kumar M, Buckwalter MS, Rowitch DH, Dawson VL, Dawson TM, Stevens B, Barres BA. (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541(7638):481-487.
Ling Z, Gayle DA, Ma SY, Lipton JW, Tong CW, Hong JS, Carvey PM. (2002) In utero bacterial endotoxin exposure causes loss of tyrosine hydroxylase neurons in the postnatal rat midbrain. Mov Disord. 17:116-124.
Liu H, Cao Y, Basbaum AI, Mazarati AM, Sankar R, Wasterlain CG. (1999) Resistance to excitotoxin-induced seizures and neuronal death in mice lacking the preprotachykinin A gene. Proc Natl Acad Sci U S A. 96:12096–12101.
Mahati, K., Bhagya, V., Christofer, T., Sneha, A., Shankaranarayana Rao, B.S. (2016) Enriched environment ameliorates depression-induced cognitive deficits and restores abnormal hippocampal synaptic plasticity. Neurobiol Learn. Mem. 134:379–391.
Maraldi T. (2013) Natural compounds as modulators of NADPH oxidases. Oxidative Med Cell Longev. 2013:271602.
Marsland AE, Gianaros PJ, Abramowitch SM, Manuck SB, Hariri AR. (2008) Interleukin-6 covaries inversely with hippocampal grey matter volume in middle-aged adults. Biol Psychiatry 64:484–490.
Martin GS1, Mannino DM, Eaton S, Moss M. (2003) The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med. 348:1546-1554.
Matin N, Tabatabaie O, Falsaperla R, Lubrano R, Pavone P, Mahmood F, Gullotta M, Serra A, Di Mauro P, Cocuzza S, Vitaliti G. (2015) Epilepsy and innate immune system: A possible immunogenic predisposition and related therapeutic implications. Hum Vaccin Immunother. 11:2021–2029.
Michels M, Vieira AS, Vuolo F, Zapelini HG, Mendonça B, Mina F, Dominguini D, Steckert A, Schuck PF, Quevedo J, Petronilho F, Dal-Pizzol F. (2015) The role of microglia activation in the development of sepsis-induced long-term cognitive impairment. Brain Behav Immun. 43:54-59.
Mirrione MM, Konomos DK, Gravanis I, Dewey SL, Aguzzi A, Heppner FL, Tsirka SE. (2010) Microglial ablation and lipopolysaccharide preconditioning affects pilocarpine-induced seizures in mice. Neurobiol Dis. 39:85–97.
Moraes CA, Santos G, de Sampaio e Spohr TC, D'Avila JC, Lima FR, Benjamim CF, Bozza FA, Gomes FC. (2015) Activated Microglia-Induced Deficits in Excitatory Synapses Through IL-1β: Implications for Cognitive Impairment in Sepsis. Mol Neurobiol. 52(1):653-663.
Morrison RS, Wenzel HJ, Kinoshita Y, Robbins CA, Donehower LA, Schwartzkroin PA. (1996) Loss of the p53 tumor suppressor gene protects neurons from kainate-induced cell death. J Neurosci. 16:1337–1345
Moser MB and Moser EI. (1998) Functional differentiation in the hippocampus. Hippocampus 8(6): 608–619.
Norden DM, Trojanowski PJ, Villanueva E, Navarro E, Godbout JP. (2016) Sequential activation of microglia and astrocyte cytokine expression precedes increased Iba-1 or GFAP immunoreactivity following systemic immune challenge. Glia 64(2):300-16.
Păunescu V, Pop-Began V, Pop-Began D. (2011) Complicaţii septice, factor de risc în chirurgia colonului. Chirurgia. 106, Supl.1, S.48.
Perry VH, Cunningham C, Holmes C. (2007) Systemic infections and inflammation affect chronic neurodegeneration. Nat Rev Immunol. 7:161-167.
Pugh CR, Kumagawa K, Fleshner M, Watkins LR, Maier SF, Rudy JW. (1998) Selective effects of peripheral lipopolysaccharide administration on contextual and auditory-cue fear conditioning. Brain Behavior and Immunity 12(3):212–229.
Püntener U, Booth SG, Perry VH, Teeling JL. (2012) Long-term impact of systemic bacterial infection on the cerebral vasculature and microglia. J Neuroinflammation 9:146.
Pyter LM, Pineros V, Galang JA, McClintock MK, Prendergast BJ. (2009) Peripheraltumors induce depressive-like behaviors and cytokine production and alterhypothalamic-pituitary-adrenal axis regulation. Proc Natl Acad Sci U S A.106:9069–9074.
Qian L, Wu HM, Chen SH, Zhang D, Ali SF, Peterson L, Wilson B, Lu RB, Hong JS, Flood PM. (2011) β2-adrenergic receptor activation prevents rodent dopaminergic neurotoxicity by inhibitingmicroglia via a novel signaling pathway. J Immunol. 186:4443–4454.
Qin L, Liu Y, Wang T, Wei SJ, Block ML, Wilson B, Liu B, Hong JS. (2004) NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J Biol Chem. 279(2):1415-1421.
Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, Knapp DJ, Crews FT. (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55(5):453-462.
Ravizza T, Noe F, Zardoni D, Vaghi V, Sifringer M, Vezzani A. (2008) Interleukin converting enzyme inhibition impairs kindling epileptogenesis in rats by blocking astrocytic IL-1b production. Neurobiol Dis. 31:327–333.
Riazi K, Galic MA, Kuzmiski JB, Ho W, Sharkey KA, Pittman QJ. (2008) Microglial activation and TNFalpha production mediate altered CNS excitability following peripheral inflammation. Proc Natl Acad Sci U S A. 105:17151-17156.
Riazi K, Galic MA, Pittman QJ. (2010) Contributions of peripheral inflammation to seizure susceptibility: cytokines and brain excitability. Epilepsy Res. 89:34-42.
Rodgers KM, Hutchinson MR, Northcutt A, Maier SF, Watkins LR, Barth DS. (2009) The cortical innate immune response increases local neuronal excitability leading to seizures. Brain 132:2478–2486.
Rosi S, Ramirez-Amaya V, Hauss-Wegrzyniak B, Wenk GL. (2004) Chronic brain inflammation leads to a decline in hippocampal NMDA-R1 receptors. J Neuroinflammation 1(1):12.
Schmidt R, Schmidt H, Curb JD, Masaki K, White LR, Launer LJ. (2002) Early inflammation and dementia: a 25-year follow-up of the Honolulu-Asia Aging Study. Ann Neurol. 52:168-174.
Shen HN, Lu CL, Yang HH. (2010) Epidemiologic trend of severe sepsis in Taiwan from 1997 through 2006. Chest 138:298–304.
Skelly DT, Hennessy E, Dansereau MA, Cunningham C. (2013) A systematic analysis of the peripheral and CNS effects of systemic LPS, IL-1beta, [corrected] TNF-alpha and IL-6 challenges in C57BL/6 mice. PLoS One 8:e69123
Sonneville R, Verdonk F, Rauturier C, Klein IF, Wolff M, Annane D, Chretien F, Sharshar T. (2013) Understanding brain dysfunction in sepsis. Ann Intensive Care 3:15.
Sparkman NL, Buchanan JB, Heyen JR, Chen J, Beverly JL, Johnson RW. (2006) Interleukin-6 facilitates lipopolysaccharide-induced disruption in working memory and expression of other proinflammatory cytokines in hippocampal neuronal cell layers. J Neurosci. 26(42):10709-10716.
Srikumar, B.N., Raju, T.R., Shankaranarayana Rao, B.S. (2007) Contrasting effects of bromocriptine on learning of a partially baited radial armmaze task in the presence and absence of restraint stress. Psychopharmacology 193(3): 363–374.
Stevens B1, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD, Stafford B, Sher A, Litke AM, Lambris JD, Smith SJ, John SW, Barres BA. (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131(6):1164-1178.
Tan ZS, Beiser AS, Vasan RS. (2008) Inflammatory markers and the risk of Alzheimer disease: the Framingham Study. Neurology 70:1222–1223.
Terrando N, Monaco C, Ma D, Foxwell BM, Feldmann M, Maze M. (2010) Tumor necrosis factor-alpha triggers a cytokine cascade yielding postoperative cognitive decline. Proc Natl Acad Sci U S A. 107(47):20518-20522.
Thomson CA, McColl A, Cavanagh J, Graham GJ. (2014) Peripheral inflammation is associated with remote global gene expression changes in the brain. J Neuroinflammation 11:73.
Vezzani A, Moneta D, Conti M, Richichi C, Ravizza T, De Luigi A, De Simoni MG, Sperk G, Andell-Jonsson S, Lundkvist J, Iverfeldt K, Bartfai T. (2000) Powerful anticonvulsant action of IL-1 receptor antagonist on intracerebral injection and astrocytic overexpression in mice. Proc Natl Acad Sci U S A. 97(21):11534-11539
Vezzani A, Moneta D, Richichi C, Aliprandi M, Burrows SJ, Ravizza T, Perego C, De Simoni MG. (2002) Functional role of inflammatory cytokines and antiinflammatory molecules in seizures and epileptogenesis. Epilepsia 43 Suppl 5:30-35.
Vezzani A, Ravizza T, Balosso S, Aronica E. (2008) Glia as a source of cytokines: implications for neuronal excitability and survival. Epilepsia 49 Suppl 2:24-32.
Vezzani A, French J, Bartfai T, Baram TZ. (2011) The role of inflammation in epilepsy. Nat Rev Neurol. 7:31-40
Wang Q, Qian L, Chen SH, Chu CH, Wilson B, Oyarzabal E, Ali S, Robinson B, Rao D, Hong JS. (2015) Post-treatment with an ultra-low dose of NADPH oxidase inhibitor diphenyleneiodonium attenuates disease progression in multiple Parkinson’s disease models. Brain 138(Pt 5):1247-1262.
Weaver J, Seeman T. (2000) Interleukin-6 as a predictor of cognitive function and cognitive decline. J Am Geriatr Soc. 48(Suppl. 1):S2.
Wilson CJ, Finch CE, Cohen HJ. (2002) Cytokines and cognition--the case for a head-to-toe inflammatory paradigm. J Am Geriatr Soc. 50(12):2041-2056.
Wind S, Beuerlein K, Eucker T, Müller H, Scheurer P, Armitage ME, Ho H, Schmidt HH, Wingler K. (2010) Comparative pharmacology of chemically distinct NADPH oxidase inhibitors. Br J Pharmacol. 161(4):885-898.
Winters BD, Eberlein M, Leung J, Needham DM, Pronovost PJ, Sevransky JE. (2010) Long-term mortality and quality of life in sepsis: a systematic review. Crit Care Med. 38(5):1276-1283.
Wu DC, Teismann P, Tieu K, Vila M, Jackson-Lewis V, Ischiropoulos H, Przedborski S. (2003) NADPH oxidase mediates oxidative stress in the -methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. Proc Natl Acad Sci USA. 100(10):6145-6150.
Wu HM1, Tzeng NS, Qian L, Wei SJ, Hu X, Chen SH, Rawls SM, Flood P, Hong JS, Lu RB. (2009) Novel neuroprotective mechanisms of memantine: increase in neurotrophic factor release from astroglia and anti-inflammation by preventing microglial activation. Neuropsychopharmacology 34(10):2344-2357.
Yaffe K, Kanaya A, Lindquist K. (2004) The metabolic syndrome, inflammation, and risk of cognitive decline. JAMA. 292:2237–2242.
Youn HS, Lee JY, Fitzgerald KA, Young HA, Akira S, Hwang DH. (2005) Specific inhibition of MyD88-independent signaling pathways of TLR3 and TLR4 by resveratrol: molecular targets are TBK1 and RIP1 in TRIF complex. J Immunol. 175:3339–3346.
Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, Barres BA. (2012) Genomic analysis of reactive astrogliosis. J Neurosci. 32(18):6391-6410.
Zhang WJ, Wei H, Frei B. (2009) Genetic deficiency of NADPH oxidase does not diminish, but rather enhances, LPS-induced acute inflammatory responses in vivo. Free Radic Biol Med. 46:791–798.
Zhang S, Wang X, Ai S, Ouyang W, Le Y, Tong J. (2017) Sepsis-induced selective loss of NMDA receptors modulates hippocampal neuropathology in surviving septic mice PLoS One 12(11).
Zhou Y, Tang H, Liu J, Dong J, Xiong H. (2011) Chemokine CCL2 modulation of neuronal excitability and synaptic transmission in rat hippocampal slices. J Neurochem. 116:406–414.
Zhu G, Okada M, Yoshida S, Mori F, Ueno S, Wakabayashi K, Kaneko S. (2006) Effects of interleukin-1beta on hippocampal glutamate and GABA releases associated with Ca2+-induced Ca2+-releasing systems. Epilepsy Res. 71(2-3):107-116.