| 研究生: |
陳政慰 Chen, Cheng-wei |
|---|---|
| 論文名稱: |
新型單相超音波馬達之分析與實現 Analysis and Implementation of a Novel Single-Phase Ultrasonic Motor |
| 指導教授: |
蔡明祺
Tsai, Mi-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 垂直電極 、單相驅動 、超音波馬達 、壓電致動器 |
| 外文關鍵詞: | single phase drive, ultrasonic motor, perpendicular electrode, piezoelectric actuator |
| 相關次數: | 點閱:83 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自二十世紀以來,光電通訊以及半導體等IT產業的發展快速,帶動精密定位與微小組裝技術升級,因此相關製造組裝設備精度需求比以往更高,而壓電材料具機電耦合特性,且其振動的頻率高及振幅小,因此具有高精度的特性,不論是奈米定位用的微位置致動器或是最新進的吸收式微電能發電機等,壓電致動器實為電磁致動元件以外提供一個不錯的選擇。
近幾年,超音波馬達以單相驅動及小型化為其發展趨勢,而本研究提出一新型單相超音波馬達,主要特色在於垂直電極設計之壓電致動器結構,藉由單一輸入訊號,激發出其特殊振動模態,此致動器結構有別於目前習知的單相超音波馬達,屬創新型設計,特點為體積小、結構簡單以及組裝容易等。實驗結果顯示,以5×5×5mm3之致動器作為線型超音波馬達之定子時,馬達最大速度及推力分別為115mm/s及3.72N,效率可達26.45%。本創新型壓電致動器設計,已陸續應用於各種相關場合,如主動式線性滑軌、微夾爪模組以及球型超音波馬達等。
Since 20th century, the development of optical communication and semiconductor industries prospered, bringing the precise positioning technique promotion. Owing to the trend of miniaturization of electronic products, manufacturing apparatus has required ever higher precision. Piezoelectric material exhibits an electromechanical coupled characteristic, and possesses precise accuracy from high frequency and small amplitude vibration. Piezoelectric actuators indeed provide a better selection for micro actuators or micro power generators, with the exception, however, of the electromagnetic actuator.
The development tendency of ultrasonic motor is moving toward a single phase drive and miniaturization. This thesis proposes a novel single phase ultrasonic motor, which is characterized by a perpendicular electrode set of the actuator. It is simple in structure; just a 5×5×5mm3 cubic type in size, and requires only one input signal to excite the special vibration mode of the actuator. Experimental results show that the maximum velocity and thrust of the novel ultrasonic motor are 115mm/s and 3.72N in sequence, while its efficiency presently reaches 26.45%. This innovative design of the piezoelectric actuator has been employed in various applications, such as an active linear guide, micro grippers, and spherical ultrasonic motors etc.
[1] H. Allik and J. R. Hughes, “Finite Element for Piezoelectric Vibration,” International Journal Numerical Methods of Engineering, No.2, pp.151-157, 1970.
[2] ANSYS Multiphysics 9.0 version, User manual, ANSYS Inc., 2004.
[3] APC International, Ltd. http://www.americanpiezo.com/
[4] T. Bein, E. J. Breitbach, and K. Uchino, “A Linear Ultrasonic Motor Using the First Longitudinal and the Fourth Bending Mode,” Smart. Mater. Struct., vol. 6, pp. 619-627, 1997.
[5] Cedrat & Cedrat Technologies http://cedrat.com/
[6] Elliptec Corp. http://www.elliptec.com/
[7] J. Friend, K. Nakamura, and S. Ueha, “A Piezoelectric Micromotor Using In-Plane Shearing of PZT Elements,” IEEE/ASME Transactions on Mechatronics, vol. 9, No. 3, pp. 467-473, 2004.
[8] N. W. Hagood and A. J. McFarland, “Modeling of a Piezoelectric Rotary Ultrasonic Motor,” IEEE Transaction on Sonics and Ultrasonics, Ferroelectrics, and Frequency Control, vol.42, pp. 210-224, 1995.
[9] Siyuan He and Weishan Chen, “Standing Wave Bi-directional Linearly Moving Ultrasonic Motor,” IEEE Transaction on Ultrasonics, Ferroelectrics and Frequency Control, vol. 45, pp. 1133-1139, 1998.
[10] T. Higuchi, Y. Yamagata, K. Furutani, and K. Kudoh, “Precise Positioning Mechanism Utilizing Rapid Deformations of Piezoelectric Elements,” Proc. of IEEE Workshop on Micro Electro Mechanical Systems, pp.47-51, 1990.
[11] IEEE standard on piezoelectricity, ANSI/IEEE Std. 176-1987
[12] A. Iino, K. Suzuki, M. Kasuga, M. Suzuki, and T. Yamanaka, “Development of a Self-Oscillating Ultrasonic Micro-Motor and Its Application to a Watch_SEIKO,” Ultrasonics 38, pp.54-59, 2000.
[13] A. Iula and M. Pappalardo, “A High-Power Traveling Wave Ultrasonic Motor,” IEEE Transaction on Ultrasonics, Ferroelectrics and Frequency Control, vol. 53, pp. 1344-1351, 2006.
[14] Konica Minolta Inc. http://konicaminolta.com/
[15] M. K. Kurosawa, O. Kodaira, Y. Tsuchitoi, and T. Higuchi, “Transducer for High Speed and Large Thrust Ultrasonic Linear Motor Using Two Sandwich-Type Vibrators,” IEEE Transaction on Ultrasonics, Ferroelectrics and Frequency Control, vol.45, pp. 1188-1195, 1998.
[16] Chaodong Li and Chunsheng Zhao, “A Large Thrust Linear Ultrasonic Motor Using Longitudinal and Flexural Modes of Rod-Shaped Transducer,” IEEE Ultrasonics Symposium, pp.691-694, 1998.
[17] C. K. Lim, S. He, I. M. Chen, and S. H. Yen, “A Piezo-on-Slider Type Linear Ultrasonic Motor for the Application of Positioning Stages,” Proceedings of IEEE/ASME, pp. 103-108, 1999.
[18] T. Morita, R. Yoshida, Y. Okamoto, M. K. Kurosawa, and T. Higuchi, “A Smooth Impact Rotation Motor Using a Multi-Layered Torsional Piezoelectric Actuator,” IEEE Transaction on Ultrasonics, Ferroelectrics and Frequency Control, vol. 46, pp. 1439-1445, 1999.
[19] Nanomotion LTD. http://www.nanomotion.com/
[20] Physik Instrumente (PI) GmbH & Co. http://www.pi.ws/
[21] Piezoelectric Technologies http://www.piezo-tech.com/eng/
[22] Y. Roh, S. Lee, and W. Han, “Design and Fabrication of a New Traveling Wave-Type Ultrasonic Motor,” Sensors and Actuators A., vol.94, pp. 205-210, 2001.
[23] T. Sashida and T. Kenjo, An Introduction to Ultrasonic Motors. New York: Clarendon Press, 1993.
[24] C. Schumitt, J. M. Breguet, A. Bergander, and R. Clavel, “Stick and Slip Actuators (SSA),” Proceedings of SPIE, The International Society for Optical Engineering, v 4194, pp. 65-74, 2000.
[25] TAMURA Corporation http://www.tamura-ss.co.jp/
[26] T. Takano and Y. Tomikawa, “Linearly Moving Ultrasonic Motor Using a Multi-Mode Vibrator,” Japanese Journal of Applied Physics, vol. 28, pp. 164-166, 1988.
[27] Y. Tomikawa, T. Takano, and H. Umeda, “Thin Rotary and Linear Ultrasonic Motors Using a Double-Mode Piezoelectric Vibrator of the First Longitudinal and Second Bending Modes,” Japanese Journal of Applied Physics, vol. 31, pp. 3073-3076, 1992.
[28] M. Tominaga, R. Kaminaga, J. R. Friend, K. Nakamura, and S. Ueha, “An Ultrasonic Linear Motor Using Ridge-Mode Traveling Waves,” IEEE Transaction on Ultrasonics, Ferroelectrics and Frequency Control, vol.52, pp. 1735-1742, 2005.
[29] K. Uchino, “Piezoelectric Ultrasonic Motors: Overview,” Smart Mater. Struct., vol. 7, pp. 273-285, 1998.
[30] K. Uchino, S. Cagatay, B. Koc, S. Dong, P. Bouchilloux, and M. Strauss, “Micro Piezoelectric Ultrasonic Motors,” Journal of Electroceramics, 13, 393-401, 2004.
[31] K. Uchino, “Expansion from IT/Robotics to Ecological/Energy Applications,” Actuator 10th International Conference on New Actuators, Bremen, pp. 48-57, 2006.
[32] S. Ueha, and Y. Tomikawa, Ultrasonic Motors: Theory and Applications. Oxford: Clarendon Press, 1993.
[33] J. Wallaschek, “Contact Mechanics of Piezoelectric Ultrasonic Motor,” Smart Mater. Struct., vol. 7, pp. 369-381, 1998.
[34] T. Yamaguchi, K. Adachi, Y. Ishimine, and K. Kato, “Wear Mode Control of Drive Tip of Ultrasonic Motor for Precision Positioning,” Wear 256, pp. 145-152, 2004.
[35] 上銀科技股份有限公司http://www.hiwin.com.tw/
[36] 汪建民, ”陶瓷技術手冊”, 中華民國冶金學會, 1999.
[37] 志豐電子股份有限公司http://www.kingstate.com.tw/
[38] 陳盛基, 黃繼震, 石世雄, 魯肇爛, 許覺良, “線型馬達驅動工具機的技術發展與應用,” 機械資訊568期, 中山科學研究院, 2004